Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -98,6 +98,24 @@ if st.session_state.df is not None and st.session_state.show_preview:
|
|
98 |
st.subheader("π Dataset Preview")
|
99 |
st.dataframe(st.session_state.df.head())
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
# SQL-RAG Analysis
|
102 |
if st.session_state.df is not None:
|
103 |
temp_dir = tempfile.TemporaryDirectory()
|
@@ -171,21 +189,20 @@ if st.session_state.df is not None:
|
|
171 |
)
|
172 |
|
173 |
write_report = Task(
|
174 |
-
description="Write the analysis report with
|
175 |
expected_output="Markdown-formatted report excluding Conclusion.",
|
176 |
agent=report_writer,
|
177 |
context=[analyze_data],
|
178 |
)
|
179 |
|
180 |
write_conclusion = Task(
|
181 |
-
description="Write a brief and impactful 3-5 line Conclusion summarizing only the most important insights/findings. Include the max, min, and average salary"
|
182 |
-
"and highlight the most impactful insights.",
|
183 |
expected_output="Markdown-formatted Conclusion/Summary section with key insights and statistics.",
|
184 |
agent=conclusion_writer,
|
185 |
context=[analyze_data],
|
186 |
)
|
187 |
|
188 |
-
#
|
189 |
crew_report = Crew(
|
190 |
agents=[sql_dev, data_analyst, report_writer],
|
191 |
tasks=[extract_data, analyze_data, write_report],
|
@@ -208,43 +225,33 @@ if st.session_state.df is not None:
|
|
208 |
query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.")
|
209 |
if st.button("Submit Query"):
|
210 |
with st.spinner("Processing query..."):
|
211 |
-
# Step 1: Generate the analysis report
|
212 |
report_inputs = {"query": query + " Provide detailed analysis but DO NOT include Conclusion."}
|
213 |
report_result = crew_report.kickoff(inputs=report_inputs)
|
214 |
|
215 |
-
# Step 2: Generate only the concise conclusion
|
216 |
conclusion_inputs = {"query": query + " Provide ONLY the most important insights in 3-5 concise lines."}
|
217 |
conclusion_result = crew_conclusion.kickoff(inputs=conclusion_inputs)
|
218 |
|
219 |
-
# Step 3: Display the report
|
220 |
-
#st.markdown("### Analysis Report:")
|
221 |
st.markdown(report_result if report_result else "β οΈ No Report Generated.")
|
222 |
|
223 |
-
|
224 |
-
|
|
|
|
|
|
|
225 |
|
226 |
-
fig_salary = px.box(st.session_state.df, x="job_title", y="salary_in_usd",
|
227 |
-
|
228 |
-
|
229 |
|
230 |
-
fig_experience = px.bar(
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
)
|
235 |
-
visualizations.append(fig_experience)
|
236 |
|
237 |
-
fig_employment = px.box(st.session_state.df, x="employment_type", y="salary_in_usd",
|
238 |
-
|
239 |
-
|
240 |
|
241 |
-
# Step 5: Insert Visual Insights
|
242 |
-
st.markdown("#### 5. Visual Insights")
|
243 |
-
for fig in visualizations:
|
244 |
-
st.plotly_chart(fig, use_container_width=True)
|
245 |
-
|
246 |
-
# Step 6: Display Concise Conclusion
|
247 |
-
#st.markdown("#### 6. Conclusion")
|
248 |
st.markdown(conclusion_result if conclusion_result else "β οΈ No Conclusion Generated.")
|
249 |
|
250 |
# Full Data Visualization Tab
|
@@ -253,23 +260,30 @@ if st.session_state.df is not None:
|
|
253 |
|
254 |
fig1 = px.histogram(st.session_state.df, x="job_title", title="Job Title Frequency")
|
255 |
st.plotly_chart(fig1)
|
|
|
256 |
|
257 |
-
fig2 = px.bar(
|
258 |
-
|
259 |
-
x="experience_level", y="salary_in_usd",
|
260 |
-
title="Average Salary by Experience Level"
|
261 |
-
)
|
262 |
st.plotly_chart(fig2)
|
|
|
263 |
|
264 |
-
fig3 = px.box(st.session_state.df, x="employment_type", y="salary_in_usd",
|
265 |
-
title="Salary Distribution by Employment Type")
|
266 |
st.plotly_chart(fig3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
|
268 |
temp_dir.cleanup()
|
269 |
else:
|
270 |
st.info("Please load a dataset to proceed.")
|
271 |
-
|
272 |
-
|
273 |
# Sidebar Reference
|
274 |
with st.sidebar:
|
275 |
st.header("π Reference:")
|
|
|
98 |
st.subheader("π Dataset Preview")
|
99 |
st.dataframe(st.session_state.df.head())
|
100 |
|
101 |
+
import tempfile
|
102 |
+
from fpdf import FPDF
|
103 |
+
|
104 |
+
# Helper Functions for Download
|
105 |
+
def save_as_txt(content, filename):
|
106 |
+
with open(filename, "w") as f:
|
107 |
+
f.write(content)
|
108 |
+
return filename
|
109 |
+
|
110 |
+
def save_as_pdf(content, filename):
|
111 |
+
pdf = FPDF()
|
112 |
+
pdf.add_page()
|
113 |
+
pdf.set_font("Arial", size=12)
|
114 |
+
for line in content.split('\n'):
|
115 |
+
pdf.multi_cell(0, 10, line)
|
116 |
+
pdf.output(filename)
|
117 |
+
return filename
|
118 |
+
|
119 |
# SQL-RAG Analysis
|
120 |
if st.session_state.df is not None:
|
121 |
temp_dir = tempfile.TemporaryDirectory()
|
|
|
189 |
)
|
190 |
|
191 |
write_report = Task(
|
192 |
+
description="Write the analysis report with Introduction, Key Insights, and Analysis. DO NOT include any Conclusion or Summary.",
|
193 |
expected_output="Markdown-formatted report excluding Conclusion.",
|
194 |
agent=report_writer,
|
195 |
context=[analyze_data],
|
196 |
)
|
197 |
|
198 |
write_conclusion = Task(
|
199 |
+
description="Write a brief and impactful 3-5 line Conclusion summarizing only the most important insights/findings. Include the max, min, and average salary and highlight the most impactful insights.",
|
|
|
200 |
expected_output="Markdown-formatted Conclusion/Summary section with key insights and statistics.",
|
201 |
agent=conclusion_writer,
|
202 |
context=[analyze_data],
|
203 |
)
|
204 |
|
205 |
+
# Crews for report and conclusion
|
206 |
crew_report = Crew(
|
207 |
agents=[sql_dev, data_analyst, report_writer],
|
208 |
tasks=[extract_data, analyze_data, write_report],
|
|
|
225 |
query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.")
|
226 |
if st.button("Submit Query"):
|
227 |
with st.spinner("Processing query..."):
|
|
|
228 |
report_inputs = {"query": query + " Provide detailed analysis but DO NOT include Conclusion."}
|
229 |
report_result = crew_report.kickoff(inputs=report_inputs)
|
230 |
|
|
|
231 |
conclusion_inputs = {"query": query + " Provide ONLY the most important insights in 3-5 concise lines."}
|
232 |
conclusion_result = crew_conclusion.kickoff(inputs=conclusion_inputs)
|
233 |
|
|
|
|
|
234 |
st.markdown(report_result if report_result else "β οΈ No Report Generated.")
|
235 |
|
236 |
+
if report_result:
|
237 |
+
tab1_txt = save_as_txt(report_result, "Tab1_Report.txt")
|
238 |
+
tab1_pdf = save_as_pdf(report_result, "Tab1_Report.pdf")
|
239 |
+
st.download_button("Download Tab 1 Report as TXT", open(tab1_txt, "rb"), file_name="Tab1_Report.txt")
|
240 |
+
st.download_button("Download Tab 1 Report as PDF", open(tab1_pdf, "rb"), file_name="Tab1_Report.pdf")
|
241 |
|
242 |
+
fig_salary = px.box(st.session_state.df, x="job_title", y="salary_in_usd", title="Salary Distribution by Job Title")
|
243 |
+
st.plotly_chart(fig_salary)
|
244 |
+
st.caption("π Salary distribution across different job titles.")
|
245 |
|
246 |
+
fig_experience = px.bar(st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
|
247 |
+
x="experience_level", y="salary_in_usd", title="Average Salary by Experience Level")
|
248 |
+
st.plotly_chart(fig_experience)
|
249 |
+
st.caption("π Average salary based on experience level.")
|
|
|
|
|
250 |
|
251 |
+
fig_employment = px.box(st.session_state.df, x="employment_type", y="salary_in_usd", title="Salary Distribution by Employment Type")
|
252 |
+
st.plotly_chart(fig_employment)
|
253 |
+
st.caption("π Salary distribution across employment types.")
|
254 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
255 |
st.markdown(conclusion_result if conclusion_result else "β οΈ No Conclusion Generated.")
|
256 |
|
257 |
# Full Data Visualization Tab
|
|
|
260 |
|
261 |
fig1 = px.histogram(st.session_state.df, x="job_title", title="Job Title Frequency")
|
262 |
st.plotly_chart(fig1)
|
263 |
+
st.caption("π Frequency of each job title in the dataset.")
|
264 |
|
265 |
+
fig2 = px.bar(st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
|
266 |
+
x="experience_level", y="salary_in_usd", title="Average Salary by Experience Level")
|
|
|
|
|
|
|
267 |
st.plotly_chart(fig2)
|
268 |
+
st.caption("π Average salary for each experience level.")
|
269 |
|
270 |
+
fig3 = px.box(st.session_state.df, x="employment_type", y="salary_in_usd", title="Salary Distribution by Employment Type")
|
|
|
271 |
st.plotly_chart(fig3)
|
272 |
+
st.caption("π Salary distribution for each employment type.")
|
273 |
+
|
274 |
+
tab2_content = "Comprehensive Data Visualizations:\n"
|
275 |
+
tab2_content += "- Job Title Frequency\n"
|
276 |
+
tab2_content += "- Average Salary by Experience Level\n"
|
277 |
+
tab2_content += "- Salary Distribution by Employment Type\n"
|
278 |
+
|
279 |
+
tab2_txt = save_as_txt(tab2_content, "Tab2_Visualizations.txt")
|
280 |
+
tab2_pdf = save_as_pdf(tab2_content, "Tab2_Visualizations.pdf")
|
281 |
+
st.download_button("Download Tab 2 Summary as TXT", open(tab2_txt, "rb"), file_name="Tab2_Visualizations.txt")
|
282 |
+
st.download_button("Download Tab 2 Summary as PDF", open(tab2_pdf, "rb"), file_name="Tab2_Visualizations.pdf")
|
283 |
|
284 |
temp_dir.cleanup()
|
285 |
else:
|
286 |
st.info("Please load a dataset to proceed.")
|
|
|
|
|
287 |
# Sidebar Reference
|
288 |
with st.sidebar:
|
289 |
st.header("π Reference:")
|