subtest / qt.py
DrishtiSharma's picture
Create qt.py
72ea0b4 verified
import streamlit as st
import pandas as pd
import sqlite3
import os
import json
from pathlib import Path
import plotly.express as px
from datetime import datetime, timezone
from crewai import Agent, Crew, Process, Task
from crewai.tools import tool
from langchain_groq import ChatGroq
from langchain_openai import ChatOpenAI
from langchain.schema.output import LLMResult
from langchain_community.tools.sql_database.tool import (
InfoSQLDatabaseTool,
ListSQLDatabaseTool,
QuerySQLCheckerTool,
QuerySQLDataBaseTool,
)
from langchain_community.utilities.sql_database import SQLDatabase
from datasets import load_dataset
import tempfile
st.title("SQL-RAG Using CrewAI πŸš€")
st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.")
# Initialize LLM
llm = None
# Model Selection
model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)
# API Key Validation and LLM Initialization
groq_api_key = os.getenv("GROQ_API_KEY")
openai_api_key = os.getenv("OPENAI_API_KEY")
if model_choice == "llama-3.3-70b":
if not groq_api_key:
st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.")
llm = None
else:
llm = ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile")
elif model_choice == "GPT-4o":
if not openai_api_key:
st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.")
llm = None
else:
llm = ChatOpenAI(api_key=openai_api_key, model="gpt-4o")
# Initialize session state for data persistence
if "df" not in st.session_state:
st.session_state.df = None
if "show_preview" not in st.session_state:
st.session_state.show_preview = False
# Dataset Input
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
if input_option == "Use Hugging Face Dataset":
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
if st.button("Load Dataset"):
try:
with st.spinner("Loading dataset..."):
dataset = load_dataset(dataset_name, split="train")
st.session_state.df = pd.DataFrame(dataset)
st.session_state.show_preview = True # Show preview after loading
st.success(f"Dataset '{dataset_name}' loaded successfully!")
except Exception as e:
st.error(f"Error: {e}")
elif input_option == "Upload CSV File":
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
if uploaded_file:
try:
st.session_state.df = pd.read_csv(uploaded_file)
st.session_state.show_preview = True # Show preview after loading
st.success("File uploaded successfully!")
except Exception as e:
st.error(f"Error loading file: {e}")
# Show Dataset Preview Only After Loading
if st.session_state.df is not None and st.session_state.show_preview:
st.subheader("πŸ“‚ Dataset Preview")
st.dataframe(st.session_state.df.head())
# SQL-RAG Analysis
if st.session_state.df is not None:
temp_dir = tempfile.TemporaryDirectory()
db_path = os.path.join(temp_dir.name, "data.db")
connection = sqlite3.connect(db_path)
st.session_state.df.to_sql("salaries", connection, if_exists="replace", index=False)
db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
@tool("list_tables")
def list_tables() -> str:
"""List all tables in the database."""
return ListSQLDatabaseTool(db=db).invoke("")
@tool("tables_schema")
def tables_schema(tables: str) -> str:
"""Get the schema and sample rows for the specified tables."""
return InfoSQLDatabaseTool(db=db).invoke(tables)
@tool("execute_sql")
def execute_sql(sql_query: str) -> str:
"""Execute a SQL query against the database and return the results."""
return QuerySQLDataBaseTool(db=db).invoke(sql_query)
@tool("check_sql")
def check_sql(sql_query: str) -> str:
"""Validate the SQL query syntax and structure before execution."""
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
sql_dev = Agent(
role="Senior Database Developer",
goal="Extract data using optimized SQL queries.",
backstory="An expert in writing optimized SQL queries for complex databases.",
llm=llm,
tools=[list_tables, tables_schema, execute_sql, check_sql],
)
data_analyst = Agent(
role="Senior Data Analyst",
goal="Analyze the data and produce insights.",
backstory="A seasoned analyst who identifies trends and patterns in datasets.",
llm=llm,
)
report_writer = Agent(
role="Technical Report Writer",
goal="Summarize the insights into a clear report.",
backstory="An expert in summarizing data insights into readable reports.",
llm=llm,
)
extract_data = Task(
description="Extract data based on the query: {query}.",
expected_output="Database results matching the query.",
agent=sql_dev,
)
analyze_data = Task(
description="Analyze the extracted data for query: {query}.",
expected_output="Analysis text summarizing findings (without a Conclusion section).",
agent=data_analyst,
context=[extract_data],
)
write_report = Task(
description="Summarize the analysis into an executive report without a Conclusion.",
expected_output="Markdown report of insights without Conclusion.",
agent=report_writer,
context=[analyze_data],
)
crew = Crew(
agents=[sql_dev, data_analyst, report_writer],
tasks=[extract_data, analyze_data, write_report],
process=Process.sequential,
verbose=True,
)
# Tabs for Query Results and General Insights
tab1, tab2 = st.tabs(["πŸ” Query Insights + Viz", "πŸ“Š Full Data Viz"])
# Tab 1: Query-Insights + Visualization
with tab1:
query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.")
if st.button("Submit Query"):
with st.spinner("Processing query..."):
# Step 1: Generate Report without Conclusion
inputs = {"query": query + " Provide a detailed analysis but DO NOT include a Conclusion."}
report_result = crew.kickoff(inputs=inputs)
# Step 2: Generate only the Conclusion
conclusion_inputs = {"query": query + " Now, provide only the Conclusion for this analysis."}
conclusion_result = crew.kickoff(inputs=conclusion_inputs)
st.markdown("### Analysis Report:")
# Step 3: Generate relevant visualizations
visualizations = []
fig_salary = px.box(st.session_state.df, x="job_title", y="salary_in_usd",
title="Salary Distribution by Job Title")
visualizations.append(fig_salary)
fig_experience = px.bar(
st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
x="experience_level", y="salary_in_usd",
title="Average Salary by Experience Level"
)
visualizations.append(fig_experience)
fig_employment = px.box(st.session_state.df, x="employment_type", y="salary_in_usd",
title="Salary Distribution by Employment Type")
visualizations.append(fig_employment)
# Step 4: Display report without conclusion
st.markdown(report_result)
# Step 5: Insert Visual Insights
st.markdown("## πŸ“Š Visual Insights")
for fig in visualizations:
st.plotly_chart(fig, use_container_width=True)
# Step 6: Append the Conclusion
st.markdown("## Conclusion")
st.markdown(conclusion_result)
# Tab 2: Full Data Visualization
with tab2:
st.subheader("πŸ“Š Comprehensive Data Visualizations")
fig1 = px.histogram(st.session_state.df, x="job_title", title="Job Title Frequency")
st.plotly_chart(fig1)
fig2 = px.bar(
st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
x="experience_level", y="salary_in_usd",
title="Average Salary by Experience Level"
)
st.plotly_chart(fig2)
fig3 = px.box(st.session_state.df, x="employment_type", y="salary_in_usd",
title="Salary Distribution by Employment Type")
st.plotly_chart(fig3)
temp_dir.cleanup()
else:
st.info("Please load a dataset to proceed.")
# Sidebar Reference
with st.sidebar:
st.header("πŸ“š Reference:")
st.markdown("[SQL Agents w CrewAI & Llama 3 - Plaban Nayak](https://github.com/plaban1981/Agents/blob/main/SQL_Agents_with_CrewAI_and_Llama_3.ipynb)")