subtest / interim.py
DrishtiSharma's picture
Update interim.py
a849379 verified
raw
history blame
5.36 kB
import streamlit as st
import pandas as pd
import sqlite3
import os
import json
from pathlib import Path
from datetime import datetime, timezone
from crewai import Agent, Crew, Process, Task
from crewai_tools import tool
from langchain_groq import ChatGroq
from langchain.schema.output import LLMResult
from langchain_core.callbacks.base import BaseCallbackHandler
from langchain_community.tools.sql_database.tool import (
InfoSQLDatabaseTool,
ListSQLDatabaseTool,
QuerySQLCheckerTool,
QuerySQLDataBaseTool,
)
from langchain_community.utilities.sql_database import SQLDatabase
from datasets import load_dataset
import tempfile
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
# LLM Logging
class LLMCallbackHandler(BaseCallbackHandler):
def __init__(self, log_path: Path):
self.log_path = log_path
def on_llm_start(self, serialized, prompts, **kwargs):
with self.log_path.open("a", encoding="utf-8") as file:
file.write(json.dumps({"event": "llm_start", "text": prompts[0], "timestamp": datetime.now().isoformat()}) + "\n")
def on_llm_end(self, response: LLMResult, **kwargs):
generation = response.generations[-1][-1].message.content
with self.log_path.open("a", encoding="utf-8") as file:
file.write(json.dumps({"event": "llm_end", "text": generation, "timestamp": datetime.now().isoformat()}) + "\n")
llm = ChatGroq(
temperature=0,
model_name="mixtral-8x7b-32768",
callbacks=[LLMCallbackHandler(Path("prompts.jsonl"))],
)
st.title("SQL-RAG Using CrewAI πŸš€")
st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.")
# Data Input Options
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
df = None
if input_option == "Use Hugging Face Dataset":
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
if st.button("Load Dataset"):
try:
with st.spinner("Loading Hugging Face dataset..."):
dataset = load_dataset(dataset_name, split="train")
df = pd.DataFrame(dataset)
st.success(f"Dataset '{dataset_name}' loaded successfully!")
st.dataframe(df.head())
except Exception as e:
st.error(f"Error loading dataset: {e}")
else:
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
if uploaded_file:
df = pd.read_csv(uploaded_file)
st.success("File uploaded successfully!")
st.dataframe(df.head())
# SQL-RAG and Query Workflow
if df is not None:
temp_dir = tempfile.TemporaryDirectory()
db_path = os.path.join(temp_dir.name, "data.db")
connection = sqlite3.connect(db_path)
df.to_sql("salaries", connection, if_exists="replace", index=False)
db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
@tool("list_tables")
def list_tables() -> str:
"""List all tables in the database."""
return ListSQLDatabaseTool(db=db).invoke("")
@tool("tables_schema")
def tables_schema(tables: str) -> str:
"""Return schema and example rows for given tables."""
return InfoSQLDatabaseTool(db=db).invoke(tables)
@tool("execute_sql")
def execute_sql(sql_query: str) -> str:
"""Execute a SQL query and return results."""
return QuerySQLDataBaseTool(db=db).invoke(sql_query)
@tool("check_sql")
def check_sql(sql_query: str) -> str:
"""Check SQL query validity."""
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
sql_dev = Agent(
role="Senior Database Developer",
goal="Construct and execute SQL queries.",
llm=llm,
tools=[list_tables, tables_schema, execute_sql, check_sql],
)
data_analyst = Agent(
role="Senior Data Analyst",
goal="Analyze the data returned from SQL queries.",
llm=llm,
)
report_writer = Agent(
role="Senior Report Editor",
goal="Summarize the analysis into a short report.",
llm=llm,
)
extract_data = Task(
description="Extract data for the query: {query}.",
expected_output="Database query results.",
agent=sql_dev,
)
analyze_data = Task(
description="Analyze the query results for: {query}.",
expected_output="Detailed analysis report.",
agent=data_analyst,
context=[extract_data],
)
write_report = Task(
description="Summarize the analysis into a brief executive summary.",
expected_output="Markdown report.",
agent=report_writer,
context=[analyze_data],
)
crew = Crew(
agents=[sql_dev, data_analyst, report_writer],
tasks=[extract_data, analyze_data, write_report],
process=Process.sequential,
verbose=2,
)
query = st.text_area("Enter Query:", placeholder="e.g., 'What is the average salary by experience level?'")
if st.button("Submit Query"):
with st.spinner("Processing your query with CrewAI..."):
inputs = {"query": query}
result = crew.kickoff(inputs=inputs)
st.markdown("### Analysis Report:")
st.markdown(result)
temp_dir.cleanup()
else:
st.info("Load a dataset to proceed.")