Spaces:
Sleeping
Sleeping
File size: 5,856 Bytes
4ae7ed4 2ac9a74 4ae7ed4 2ac9a74 4ae7ed4 2ac9a74 4ae7ed4 2ac9a74 4ae7ed4 2ac9a74 77389d5 4ae7ed4 7752a10 4ae7ed4 7752a10 4ae7ed4 7752a10 4ae7ed4 9abae49 7752a10 9bd334d 7752a10 9abae49 7752a10 9abae49 9bd334d 7752a10 9abae49 9bd334d 7752a10 9bd334d 7752a10 9bd334d 7752a10 9bd334d 7752a10 9bd334d 7752a10 9bd334d 7752a10 9bd334d 7752a10 9bd334d 7752a10 9bd334d 7752a10 9bd334d 7752a10 9bd334d 7752a10 9bd334d 7752a10 9bd334d 7752a10 9bd334d 7752a10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import streamlit as st
import pandas as pd
import sqlite3
import os
import json
from pathlib import Path
from datetime import datetime, timezone
from crewai import Agent, Crew, Process, Task
from crewai_tools import tool
from langchain_groq import ChatGroq
from langchain.schema.output import LLMResult
from langchain_core.callbacks.base import BaseCallbackHandler
from langchain_community.tools.sql_database.tool import (
InfoSQLDatabaseTool,
ListSQLDatabaseTool,
QuerySQLCheckerTool,
QuerySQLDataBaseTool,
)
from langchain_community.utilities.sql_database import SQLDatabase
from datasets import load_dataset
import tempfile
# Environment setup
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
# LLM Callback Logger
class LLMCallbackHandler(BaseCallbackHandler):
def __init__(self, log_path: Path):
self.log_path = log_path
def on_llm_start(self, serialized, prompts, **kwargs):
with self.log_path.open("a", encoding="utf-8") as file:
file.write(json.dumps({"event": "llm_start", "text": prompts[0], "timestamp": datetime.now().isoformat()}) + "\n")
def on_llm_end(self, response: LLMResult, **kwargs):
generation = response.generations[-1][-1].message.content
with self.log_path.open("a", encoding="utf-8") as file:
file.write(json.dumps({"event": "llm_end", "text": generation, "timestamp": datetime.now().isoformat()}) + "\n")
# Initialize the LLM
llm = ChatGroq(
temperature=0,
model_name="mixtral-8x7b-32768",
callbacks=[LLMCallbackHandler(Path("prompts.jsonl"))],
)
st.title("SQL-RAG Using CrewAI π")
st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.")
# Input Options
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
df = None
if input_option == "Use Hugging Face Dataset":
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
if st.button("Load Dataset"):
try:
with st.spinner("Loading Hugging Face dataset..."):
dataset = load_dataset(dataset_name, split="train")
df = pd.DataFrame(dataset)
st.success(f"Dataset '{dataset_name}' loaded successfully!")
st.dataframe(df.head())
except Exception as e:
st.error(f"Error loading dataset: {e}")
else:
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
if uploaded_file:
df = pd.read_csv(uploaded_file)
st.success("File uploaded successfully!")
st.dataframe(df.head())
# SQL-RAG Analysis
if df is not None:
temp_dir = tempfile.TemporaryDirectory()
db_path = os.path.join(temp_dir.name, "data.db")
connection = sqlite3.connect(db_path)
df.to_sql("salaries", connection, if_exists="replace", index=False)
db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
# Tools with proper docstrings
@tool("list_tables")
def list_tables() -> str:
"""List all tables in the SQLite database."""
return ListSQLDatabaseTool(db=db).invoke("")
@tool("tables_schema")
def tables_schema(tables: str) -> str:
"""
Get the schema and sample rows for specific tables in the database.
Input: Comma-separated table names.
Example: 'salaries'
"""
return InfoSQLDatabaseTool(db=db).invoke(tables)
@tool("execute_sql")
def execute_sql(sql_query: str) -> str:
"""
Execute a valid SQL query on the database and return the results.
Input: A SQL query string.
Example: 'SELECT * FROM salaries LIMIT 5;'
"""
return QuerySQLDataBaseTool(db=db).invoke(sql_query)
@tool("check_sql")
def check_sql(sql_query: str) -> str:
"""
Check the validity of a SQL query before execution.
Input: A SQL query string.
Example: 'SELECT salary FROM salaries WHERE salary > 10000;'
"""
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
# Agents
sql_dev = Agent(
role="Database Developer",
goal="Extract relevant data by executing SQL queries.",
llm=llm,
tools=[list_tables, tables_schema, execute_sql, check_sql],
)
data_analyst = Agent(
role="Data Analyst",
goal="Analyze the extracted data and generate detailed insights.",
llm=llm,
)
report_writer = Agent(
role="Report Writer",
goal="Summarize the analysis into an executive report.",
llm=llm,
)
# Tasks
extract_data = Task(
description="Extract data for the query: {query}.",
expected_output="Database query results.",
agent=sql_dev,
)
analyze_data = Task(
description="Analyze the query results for: {query}.",
expected_output="Analysis report.",
agent=data_analyst,
context=[extract_data],
)
write_report = Task(
description="Summarize the analysis into an executive summary.",
expected_output="Markdown-formatted report.",
agent=report_writer,
context=[analyze_data],
)
crew = Crew(
agents=[sql_dev, data_analyst, report_writer],
tasks=[extract_data, analyze_data, write_report],
process=Process.sequential,
verbose=2,
)
query = st.text_area("Enter Query:", placeholder="e.g., 'What is the average salary by experience level?'")
if st.button("Submit Query"):
with st.spinner("Processing your query with CrewAI..."):
inputs = {"query": query}
result = crew.kickoff(inputs=inputs)
st.markdown("### Analysis Report:")
st.markdown(result)
temp_dir.cleanup()
else:
st.info("Load a dataset to proceed.")
|