File size: 5,856 Bytes
4ae7ed4
 
2ac9a74
4ae7ed4
 
2ac9a74
4ae7ed4
2ac9a74
 
4ae7ed4
2ac9a74
4ae7ed4
2ac9a74
 
 
 
 
 
 
77389d5
4ae7ed4
 
7752a10
4ae7ed4
 
7752a10
4ae7ed4
 
 
 
 
 
 
 
 
 
 
 
 
7752a10
4ae7ed4
 
 
 
 
 
9abae49
7752a10
9bd334d
7752a10
 
9abae49
7752a10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9abae49
 
 
9bd334d
7752a10
9abae49
9bd334d
 
 
7752a10
9bd334d
 
7752a10
9bd334d
 
7752a10
9bd334d
 
 
 
7752a10
 
 
 
 
 
9bd334d
 
 
 
7752a10
 
 
 
 
 
9bd334d
 
 
 
7752a10
 
 
 
 
 
9bd334d
 
 
 
 
7752a10
9bd334d
 
 
 
 
 
7752a10
9bd334d
 
 
 
7752a10
 
9bd334d
 
 
 
 
7752a10
 
9bd334d
 
 
 
7752a10
 
9bd334d
 
 
 
 
7752a10
 
9bd334d
 
 
 
 
 
 
 
 
 
 
7752a10
 
 
9bd334d
 
 
 
 
 
 
7752a10
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import streamlit as st
import pandas as pd
import sqlite3
import os
import json
from pathlib import Path
from datetime import datetime, timezone
from crewai import Agent, Crew, Process, Task
from crewai_tools import tool
from langchain_groq import ChatGroq
from langchain.schema.output import LLMResult
from langchain_core.callbacks.base import BaseCallbackHandler
from langchain_community.tools.sql_database.tool import (
    InfoSQLDatabaseTool,
    ListSQLDatabaseTool,
    QuerySQLCheckerTool,
    QuerySQLDataBaseTool,
)
from langchain_community.utilities.sql_database import SQLDatabase
from datasets import load_dataset
import tempfile

# Environment setup
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")

# LLM Callback Logger
class LLMCallbackHandler(BaseCallbackHandler):
    def __init__(self, log_path: Path):
        self.log_path = log_path

    def on_llm_start(self, serialized, prompts, **kwargs):
        with self.log_path.open("a", encoding="utf-8") as file:
            file.write(json.dumps({"event": "llm_start", "text": prompts[0], "timestamp": datetime.now().isoformat()}) + "\n")

    def on_llm_end(self, response: LLMResult, **kwargs):
        generation = response.generations[-1][-1].message.content
        with self.log_path.open("a", encoding="utf-8") as file:
            file.write(json.dumps({"event": "llm_end", "text": generation, "timestamp": datetime.now().isoformat()}) + "\n")

# Initialize the LLM
llm = ChatGroq(
    temperature=0,
    model_name="mixtral-8x7b-32768",
    callbacks=[LLMCallbackHandler(Path("prompts.jsonl"))],
)

st.title("SQL-RAG Using CrewAI πŸš€")
st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.")

# Input Options
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
df = None

if input_option == "Use Hugging Face Dataset":
    dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
    if st.button("Load Dataset"):
        try:
            with st.spinner("Loading Hugging Face dataset..."):
                dataset = load_dataset(dataset_name, split="train")
                df = pd.DataFrame(dataset)
                st.success(f"Dataset '{dataset_name}' loaded successfully!")
                st.dataframe(df.head())
        except Exception as e:
            st.error(f"Error loading dataset: {e}")
else:
    uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
    if uploaded_file:
        df = pd.read_csv(uploaded_file)
        st.success("File uploaded successfully!")
        st.dataframe(df.head())

# SQL-RAG Analysis
if df is not None:
    temp_dir = tempfile.TemporaryDirectory()
    db_path = os.path.join(temp_dir.name, "data.db")
    connection = sqlite3.connect(db_path)
    df.to_sql("salaries", connection, if_exists="replace", index=False)
    db = SQLDatabase.from_uri(f"sqlite:///{db_path}")

    # Tools with proper docstrings
    @tool("list_tables")
    def list_tables() -> str:
        """List all tables in the SQLite database."""
        return ListSQLDatabaseTool(db=db).invoke("")

    @tool("tables_schema")
    def tables_schema(tables: str) -> str:
        """
        Get the schema and sample rows for specific tables in the database.

        Input: Comma-separated table names.
        Example: 'salaries'
        """
        return InfoSQLDatabaseTool(db=db).invoke(tables)

    @tool("execute_sql")
    def execute_sql(sql_query: str) -> str:
        """
        Execute a valid SQL query on the database and return the results.

        Input: A SQL query string.
        Example: 'SELECT * FROM salaries LIMIT 5;'
        """
        return QuerySQLDataBaseTool(db=db).invoke(sql_query)

    @tool("check_sql")
    def check_sql(sql_query: str) -> str:
        """
        Check the validity of a SQL query before execution.

        Input: A SQL query string.
        Example: 'SELECT salary FROM salaries WHERE salary > 10000;'
        """
        return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})

    # Agents
    sql_dev = Agent(
        role="Database Developer",
        goal="Extract relevant data by executing SQL queries.",
        llm=llm,
        tools=[list_tables, tables_schema, execute_sql, check_sql],
    )

    data_analyst = Agent(
        role="Data Analyst",
        goal="Analyze the extracted data and generate detailed insights.",
        llm=llm,
    )

    report_writer = Agent(
        role="Report Writer",
        goal="Summarize the analysis into an executive report.",
        llm=llm,
    )

    # Tasks
    extract_data = Task(
        description="Extract data for the query: {query}.",
        expected_output="Database query results.",
        agent=sql_dev,
    )

    analyze_data = Task(
        description="Analyze the query results for: {query}.",
        expected_output="Analysis report.",
        agent=data_analyst,
        context=[extract_data],
    )

    write_report = Task(
        description="Summarize the analysis into an executive summary.",
        expected_output="Markdown-formatted report.",
        agent=report_writer,
        context=[analyze_data],
    )

    crew = Crew(
        agents=[sql_dev, data_analyst, report_writer],
        tasks=[extract_data, analyze_data, write_report],
        process=Process.sequential,
        verbose=2,
    )

    query = st.text_area("Enter Query:", placeholder="e.g., 'What is the average salary by experience level?'")
    if st.button("Submit Query"):
        with st.spinner("Processing your query with CrewAI..."):
            inputs = {"query": query}
            result = crew.kickoff(inputs=inputs)
            st.markdown("### Analysis Report:")
            st.markdown(result)

    temp_dir.cleanup()
else:
    st.info("Load a dataset to proceed.")