quick-spin / app.py
DrishtiSharma's picture
Update app.py
8908600 verified
raw
history blame
8.82 kB
# to-do: Enable downloading multiple patent PDFs via corresponding links
import sys
import os
import re
import shutil
import time
import fitz
import streamlit as st
import nltk
import tempfile
import subprocess
# Pin NLTK to version 3.9.1
REQUIRED_NLTK_VERSION = "3.9.1"
subprocess.run([sys.executable, "-m", "pip", "install", f"nltk=={REQUIRED_NLTK_VERSION}"])
# Set up temporary directory for NLTK resources
nltk_data_path = os.path.join(tempfile.gettempdir(), "nltk_data")
os.makedirs(nltk_data_path, exist_ok=True)
nltk.data.path.append(nltk_data_path)
# Download 'punkt_tab' for compatibility
try:
print("Ensuring NLTK 'punkt_tab' resource is downloaded...")
nltk.download("punkt_tab", download_dir=nltk_data_path)
except Exception as e:
print(f"Error downloading NLTK 'punkt_tab': {e}")
raise e
sys.path.append(os.path.abspath("."))
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
from langchain.llms import OpenAI
from langchain.document_loaders import UnstructuredPDFLoader
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.text_splitter import NLTKTextSplitter
from patent_downloader import PatentDownloader
PERSISTED_DIRECTORY = tempfile.mkdtemp()
# Fetch API key securely from the environment
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
if not OPENAI_API_KEY:
st.error("Critical Error: OpenAI API key not found in the environment variables. Please configure it.")
st.stop()
def check_poppler_installed():
if not shutil.which("pdfinfo"):
raise EnvironmentError(
"Poppler is not installed or not in PATH. Install 'poppler-utils' for PDF processing."
)
check_poppler_installed()
def load_docs(document_path):
try:
loader = UnstructuredPDFLoader(
document_path,
mode="elements",
strategy="fast",
ocr_languages=None
)
documents = loader.load()
text_splitter = NLTKTextSplitter(chunk_size=1000)
split_docs = text_splitter.split_documents(documents)
# Filter metadata to only include str, int, float, or bool
for doc in split_docs:
if hasattr(doc, "metadata") and isinstance(doc.metadata, dict):
doc.metadata = {
k: v for k, v in doc.metadata.items()
if isinstance(v, (str, int, float, bool))
}
return split_docs
except Exception as e:
st.error(f"Failed to load and process PDF: {e}")
st.stop()
def already_indexed(vectordb, file_name):
indexed_sources = set(
x["source"] for x in vectordb.get(include=["metadatas"])["metadatas"]
)
return file_name in indexed_sources
def load_chain(file_name=None):
loaded_patent = st.session_state.get("LOADED_PATENT")
vectordb = Chroma(
persist_directory=PERSISTED_DIRECTORY,
embedding_function=HuggingFaceEmbeddings(),
)
if loaded_patent == file_name or already_indexed(vectordb, file_name):
st.write("✅ Already indexed.")
else:
vectordb.delete_collection()
docs = load_docs(file_name)
st.write("🔍 Number of Documents: ", len(docs))
vectordb = Chroma.from_documents(
docs, HuggingFaceEmbeddings(), persist_directory=PERSISTED_DIRECTORY
)
vectordb.persist()
st.session_state["LOADED_PATENT"] = file_name
memory = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True,
input_key="question",
output_key="answer",
)
return ConversationalRetrievalChain.from_llm(
OpenAI(temperature=0, openai_api_key=OPENAI_API_KEY),
vectordb.as_retriever(search_kwargs={"k": 3}),
return_source_documents=False,
memory=memory,
)
def extract_patent_number(url):
pattern = r"/patent/([A-Z]{2}\d+)"
match = re.search(pattern, url)
return match.group(1) if match else None
def download_pdf(patent_number):
try:
patent_downloader = PatentDownloader(verbose=True)
output_path = patent_downloader.download(patents=patent_number, output_path=tempfile.gettempdir())
return output_path[0]
except Exception as e:
st.error(f"Failed to download patent PDF: {e}")
st.stop()
def preview_pdf(pdf_path):
"""Generate and display the first page of the PDF as an image."""
try:
doc = fitz.open(pdf_path) # Open PDF
first_page = doc[0] # Extract the first page
pix = first_page.get_pixmap() # Render page to a Pixmap (image)
temp_image_path = os.path.join(tempfile.gettempdir(), "pdf_preview.png")
pix.save(temp_image_path) # Save the image temporarily
return temp_image_path
except Exception as e:
st.error(f"Error generating PDF preview: {e}")
return None
if __name__ == "__main__":
st.set_page_config(
page_title="Patent Chat: Google Patents Chat Demo",
page_icon="📖",
layout="wide",
initial_sidebar_state="expanded",
)
st.header("📖 Patent Chat: Google Patents Chat Demo")
# Fetch query parameters safely
query_params = st.query_params
default_patent_link = query_params.get("patent_link", "https://patents.google.com/patent/US8676427B1/en")
# Input for Google Patent Link
patent_link = st.text_area("Enter Google Patent Link:", value=default_patent_link, height=100)
# Button to start processing
if st.button("Load and Process Patent"):
if not patent_link:
st.warning("Please enter a Google patent link to proceed.")
st.stop()
# Extract patent number
patent_number = extract_patent_number(patent_link)
if not patent_number:
st.error("Invalid patent link format. Please provide a valid Google patent link.")
st.stop()
st.write(f"Patent number: **{patent_number}**")
# File download handling
pdf_path = os.path.join(tempfile.gettempdir(), f"{patent_number}.pdf")
if os.path.isfile(pdf_path):
st.write("✅ File already downloaded.")
else:
st.write("📥 Downloading patent file...")
pdf_path = download_pdf(patent_number)
st.write(f"✅ File downloaded: {pdf_path}")
# Generate and display PDF preview
st.write("🖼️ Generating PDF preview...")
preview_image_path = preview_pdf(pdf_path)
if preview_image_path:
st.image(preview_image_path, caption="First Page Preview", use_column_width=True)
else:
st.warning("Failed to generate a preview for this PDF.")
# Load the document into the system
st.write("🔄 Loading document into the system...")
# Persist the chain in session state to prevent reloading
if "chain" not in st.session_state or st.session_state.get("loaded_file") != pdf_path:
st.session_state.chain = load_chain(pdf_path)
st.session_state.loaded_file = pdf_path
st.session_state.messages = [{"role": "assistant", "content": "Hello! How can I assist you with this patent?"}]
st.success("🚀 Document successfully loaded! You can now start asking questions.")
# Initialize messages if not already done
if "messages" not in st.session_state:
st.session_state.messages = [{"role": "assistant", "content": "Hello! How can I assist you with this patent?"}]
# Display previous chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# User input and chatbot response
if "chain" in st.session_state:
if user_input := st.chat_input("What is your question?"):
st.session_state.messages.append({"role": "user", "content": user_input})
with st.chat_message("user"):
st.markdown(user_input)
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
with st.spinner("Generating response..."):
try:
assistant_response = st.session_state.chain({"question": user_input})
full_response = assistant_response["answer"]
except Exception as e:
full_response = f"An error occurred: {e}"
message_placeholder.markdown(full_response)
st.session_state.messages.append({"role": "assistant", "content": full_response})
else:
st.info("Press the 'Load and Process Patent' button to start processing.")