DrishtiSharma commited on
Commit
96c68b5
Β·
verified Β·
1 Parent(s): 76beeac

Create interim_v1.py

Browse files
Files changed (1) hide show
  1. mylab/interim_v1.py +166 -0
mylab/interim_v1.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import sqlite3
4
+ import os
5
+ import json
6
+ from pathlib import Path
7
+ from datetime import datetime, timezone
8
+ from crewai import Agent, Crew, Process, Task
9
+ from crewai.tools import tool
10
+ from langchain_groq import ChatGroq
11
+ from langchain_openai import ChatOpenAI
12
+ from langchain.schema.output import LLMResult
13
+ from langchain_core.callbacks.base import BaseCallbackHandler
14
+ from langchain_community.tools.sql_database.tool import (
15
+ InfoSQLDatabaseTool,
16
+ ListSQLDatabaseTool,
17
+ QuerySQLCheckerTool,
18
+ QuerySQLDataBaseTool,
19
+ )
20
+ from langchain_community.utilities.sql_database import SQLDatabase
21
+ from datasets import load_dataset
22
+ import tempfile
23
+
24
+ # API Key
25
+ os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
26
+
27
+ st.title("Blah Blah App Using CrewAI πŸš€")
28
+ st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.")
29
+
30
+ # Initialize LLM
31
+ llm = None
32
+
33
+ # Model Selection
34
+ model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)
35
+
36
+
37
+ # API Key Validation and LLM Initialization
38
+ groq_api_key = os.getenv("GROQ_API_KEY")
39
+ openai_api_key = os.getenv("OPENAI_API_KEY")
40
+
41
+ if model_choice == "llama-3.3-70b":
42
+ if not groq_api_key:
43
+ st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.")
44
+ llm = None
45
+ else:
46
+ llm = ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile")
47
+ elif model_choice == "GPT-4o":
48
+ if not openai_api_key:
49
+ st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.")
50
+ llm = None
51
+ else:
52
+ llm = ChatOpenAI(api_key=openai_api_key, model="gpt-4o")
53
+
54
+ # Initialize session state for data persistence
55
+ if "df" not in st.session_state:
56
+ st.session_state.df = None
57
+
58
+ # Dataset Input
59
+ input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
60
+ if input_option == "Use Hugging Face Dataset":
61
+ dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="HUPD/hupd")
62
+ if st.button("Load Dataset"):
63
+ try:
64
+ with st.spinner("Loading dataset..."):
65
+ dataset = load_dataset(dataset_name, name="sample", split="train", trust_remote_code=True, uniform_split=True)
66
+ st.session_state.df = pd.DataFrame(dataset)
67
+ st.success(f"Dataset '{dataset_name}' loaded successfully!")
68
+ st.dataframe(st.session_state.df.head())
69
+ except Exception as e:
70
+ st.error(f"Error: {e}")
71
+ elif input_option == "Upload CSV File":
72
+ uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
73
+ if uploaded_file:
74
+ st.session_state.df = pd.read_csv(uploaded_file)
75
+ st.success("File uploaded successfully!")
76
+ st.dataframe(st.session_state.df.head())
77
+
78
+
79
+ if st.session_state.df is not None:
80
+ # Database setup
81
+ temp_dir = tempfile.TemporaryDirectory()
82
+ db_path = os.path.join(temp_dir.name, "patent_data.db")
83
+ connection = sqlite3.connect(db_path)
84
+ st.session_state.df.to_sql("patents", connection, if_exists="replace", index=False)
85
+ db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
86
+
87
+ # SQL Tools
88
+ @tool("list_tables")
89
+ def list_tables() -> str:
90
+ """List all tables in the patent database."""
91
+ return ListSQLDatabaseTool(db=db).invoke("")
92
+
93
+ @tool("tables_schema")
94
+ def tables_schema(tables: str) -> str:
95
+ """Get schema and sample rows for given tables."""
96
+ return InfoSQLDatabaseTool(db=db).invoke(tables)
97
+
98
+ @tool("execute_sql")
99
+ def execute_sql(sql_query: str) -> str:
100
+ """Execute a SQL query against the patent database."""
101
+ return QuerySQLDataBaseTool(db=db).invoke(sql_query)
102
+
103
+ # --- CrewAI Agents for Patent Analysis ---
104
+ patent_sql_dev = Agent(
105
+ role="Patent Data Analyst",
106
+ goal="Extract patent data using optimized SQL queries.",
107
+ backstory="An expert in writing optimized SQL queries for complex patent databases.",
108
+ llm=llm,
109
+ tools=[list_tables, tables_schema, execute_sql],
110
+ )
111
+
112
+ patent_data_analyst = Agent(
113
+ role="Patent Data Analyst",
114
+ goal="Analyze the data and produce insights.",
115
+ backstory="A seasoned analyst who identifies trends and patterns in datasets.",
116
+ llm=llm,
117
+ )
118
+
119
+ patent_report_writer = Agent(
120
+ role="Patent Report Writer",
121
+ goal="Summarize patent insights into a clear report.",
122
+ backstory="Expert in summarizing patent data insights into comprehensive reports.",
123
+ llm=llm,
124
+ )
125
+
126
+ # --- Crew Tasks ---
127
+ extract_data = Task(
128
+ description="Extract patents related to the query: {query}.",
129
+ expected_output="Patent data matching the query.",
130
+ agent=patent_sql_dev,
131
+ )
132
+
133
+ analyze_data = Task(
134
+ description="Analyze the extracted patent data for query: {query}.",
135
+ expected_output="Analysis text summarizing findings.",
136
+ agent=patent_data_analyst,
137
+ context=[extract_data],
138
+ )
139
+
140
+ write_report = Task(
141
+ description="Summarize analysis into an executive report.",
142
+ expected_output="Markdown report of insights.",
143
+ agent=patent_report_writer,
144
+ context=[analyze_data],
145
+ )
146
+
147
+ # Assemble Crew
148
+ crew = Crew(
149
+ agents=[patent_sql_dev, patent_data_analyst, patent_report_writer],
150
+ tasks=[extract_data, analyze_data, write_report],
151
+ process=Process.sequential,
152
+ verbose=True,
153
+ )
154
+
155
+ #Query Input for Patent Analysis
156
+ query = st.text_area("Enter Patent Analysis Query:", placeholder="e.g., 'How many patents related to Machine Learning were filed after 2016?'")
157
+ if st.button("Submit Query"):
158
+ with st.spinner("Processing your query..."):
159
+ inputs = {"query": query}
160
+ result = crew.kickoff(inputs=inputs)
161
+ st.markdown("### πŸ“Š Patent Analysis Report")
162
+ st.markdown(result)
163
+
164
+ temp_dir.cleanup()
165
+ else:
166
+ st.info("Please load a patent dataset to proceed.")