Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
import sqlite3 | |
import os | |
import json | |
from pathlib import Path | |
from datetime import datetime, timezone | |
from crewai import Agent, Crew, Process, Task | |
from crewai.tools import tool | |
from langchain_groq import ChatGroq | |
from langchain_openai import ChatOpenAI | |
from langchain.schema.output import LLMResult | |
from langchain_core.callbacks.base import BaseCallbackHandler | |
from langchain_community.tools.sql_database.tool import ( | |
InfoSQLDatabaseTool, | |
ListSQLDatabaseTool, | |
QuerySQLCheckerTool, | |
QuerySQLDataBaseTool, | |
) | |
from langchain_community.utilities.sql_database import SQLDatabase | |
from datasets import load_dataset | |
import tempfile | |
st.title("Blah Blah App π") | |
st.write("Analyze datasets using natural language queries.") | |
# Initialize LLM | |
llm = None | |
# Model Selection | |
model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True) | |
# API Key Validation and LLM Initialization | |
groq_api_key = os.getenv("GROQ_API_KEY") | |
openai_api_key = os.getenv("OPENAI_API_KEY") | |
if model_choice == "llama-3.3-70b": | |
if not groq_api_key: | |
st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.") | |
llm = None | |
else: | |
llm = ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile") | |
elif model_choice == "GPT-4o": | |
if not openai_api_key: | |
st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.") | |
llm = None | |
else: | |
llm = ChatOpenAI(api_key=openai_api_key, model="gpt-4o") | |
# Initialize session state for data persistence | |
if "df" not in st.session_state: | |
st.session_state.df = None | |
# Dataset Input | |
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"]) | |
if input_option == "Use Hugging Face Dataset": | |
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="HUPD/hupd") | |
if st.button("Load Dataset"): | |
try: | |
with st.spinner("Loading dataset..."): | |
dataset = load_dataset(dataset_name, name="sample", split="train", trust_remote_code=True, uniform_split=True) | |
st.session_state.df = pd.DataFrame(dataset) | |
st.success(f"Dataset '{dataset_name}' loaded successfully!") | |
st.dataframe(st.session_state.df.head()) | |
except Exception as e: | |
st.error(f"Error: {e}") | |
elif input_option == "Upload CSV File": | |
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"]) | |
if uploaded_file: | |
st.session_state.df = pd.read_csv(uploaded_file) | |
st.success("File uploaded successfully!") | |
st.dataframe(st.session_state.df.head()) | |
if st.session_state.df is not None: | |
# Database setup | |
temp_dir = tempfile.TemporaryDirectory() | |
db_path = os.path.join(temp_dir.name, "patent_data.db") | |
connection = sqlite3.connect(db_path) | |
st.session_state.df.to_sql("patents", connection, if_exists="replace", index=False) | |
db = SQLDatabase.from_uri(f"sqlite:///{db_path}") | |
# SQL Tools | |
def list_tables() -> str: | |
"""List all tables in the patent database.""" | |
return ListSQLDatabaseTool(db=db).invoke("") | |
def tables_schema(tables: str) -> str: | |
"""Get schema and sample rows for given tables.""" | |
return InfoSQLDatabaseTool(db=db).invoke(tables) | |
def execute_sql(sql_query: str) -> str: | |
"""Execute a SQL query against the patent database.""" | |
return QuerySQLDataBaseTool(db=db).invoke(sql_query) | |
# --- CrewAI Agents for Patent Analysis --- | |
patent_sql_dev = Agent( | |
role="Patent Data Analyst", | |
goal="Extract patent data using optimized SQL queries.", | |
backstory="An expert in writing optimized SQL queries for complex patent databases.", | |
llm=llm, | |
tools=[list_tables, tables_schema, execute_sql], | |
) | |
patent_data_analyst = Agent( | |
role="Patent Data Analyst", | |
goal="Analyze the data and produce insights.", | |
backstory="A seasoned analyst who identifies trends and patterns in datasets.", | |
llm=llm, | |
) | |
patent_report_writer = Agent( | |
role="Patent Report Writer", | |
goal="Summarize patent insights into a clear report.", | |
backstory="Expert in summarizing patent data insights into comprehensive reports.", | |
llm=llm, | |
) | |
# --- Crew Tasks --- | |
extract_data = Task( | |
description="Extract patents related to the query: {query}.", | |
expected_output="Patent data matching the query.", | |
agent=patent_sql_dev, | |
) | |
analyze_data = Task( | |
description="Analyze the extracted patent data for query: {query}.", | |
expected_output="Analysis text summarizing findings.", | |
agent=patent_data_analyst, | |
context=[extract_data], | |
) | |
write_report = Task( | |
description="Summarize analysis into an executive report.", | |
expected_output="Markdown report of insights.", | |
agent=patent_report_writer, | |
context=[analyze_data], | |
) | |
# Assemble Crew | |
crew = Crew( | |
agents=[patent_sql_dev, patent_data_analyst, patent_report_writer], | |
tasks=[extract_data, analyze_data, write_report], | |
process=Process.sequential, | |
verbose=True, | |
) | |
#Query Input for Patent Analysis | |
query = st.text_area("Enter Patent Analysis Query:", placeholder="e.g., 'How many patents related to Machine Learning were filed after 2016?'") | |
if st.button("Submit Query"): | |
with st.spinner("Processing your query..."): | |
inputs = {"query": query} | |
result = crew.kickoff(inputs=inputs) | |
st.markdown("### π Patent Analysis Report") | |
st.markdown(result) | |
temp_dir.cleanup() | |
else: | |
st.info("Please load a patent dataset to proceed.") |