patentability / app.py
DrishtiSharma's picture
Update app.py
b8e252c verified
import streamlit as st
import pandas as pd
import sqlite3
import os
from crewai import Agent, Crew, Process, Task
from crewai.tools import tool
from langchain_groq import ChatGroq
from langchain_openai import ChatOpenAI
from langchain_community.tools.sql_database.tool import (
InfoSQLDatabaseTool,
ListSQLDatabaseTool,
QuerySQLDataBaseTool,
)
from langchain_community.utilities.sql_database import SQLDatabase
from datasets import load_dataset
import tempfile
st.title("Blah App")
st.write("Analyze datasets using natural language queries.")
def initialize_llm(model_choice):
groq_api_key = os.getenv("GROQ_API_KEY")
openai_api_key = os.getenv("OPENAI_API_KEY")
if model_choice == "llama-3.3-70b":
if not groq_api_key:
st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.")
return None
return ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile")
elif model_choice == "GPT-4o":
if not openai_api_key:
st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.")
return None
return ChatOpenAI(api_key=openai_api_key, model="gpt-4o")
model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)
llm = initialize_llm(model_choice)
def load_dataset_into_session():
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
if input_option == "Use Hugging Face Dataset":
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="HUPD/hupd")
if st.button("Load Dataset"):
try:
dataset = load_dataset(dataset_name, name="sample", split="train", trust_remote_code=True, uniform_split=True)
st.session_state.df = pd.DataFrame(dataset)
st.success(f"Dataset '{dataset_name}' loaded successfully!")
st.dataframe(st.session_state.df.head(10))
except Exception as e:
st.error(f"Error: {e}")
elif input_option == "Upload CSV File":
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
if uploaded_file:
st.session_state.df = pd.read_csv(uploaded_file)
st.success("File uploaded successfully!")
st.dataframe(st.session_state.df.head(10))
if "df" not in st.session_state:
st.session_state.df = None
load_dataset_into_session()
def initialize_database(df):
temp_dir = tempfile.TemporaryDirectory()
db_path = os.path.join(temp_dir.name, "patent_data.db")
connection = sqlite3.connect(db_path)
df.to_sql("patents", connection, if_exists="replace", index=False)
db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
return db, temp_dir
def create_sql_tools(db):
@tool("list_tables")
def list_tables() -> str:
"""List all tables in the patent database."""
return ListSQLDatabaseTool(db=db).invoke("")
@tool("tables_schema")
def tables_schema(tables: str) -> str:
"""Get schema and sample rows for given tables."""
return InfoSQLDatabaseTool(db=db).invoke(tables)
@tool("execute_sql")
def execute_sql(sql_query: str) -> str:
"""Execute a SQL query against the patent database."""
return QuerySQLDataBaseTool(db=db).invoke(sql_query)
return list_tables, tables_schema, execute_sql
def initialize_agents(llm, tools):
list_tables, tables_schema, execute_sql = tools
sql_agent = Agent(
role="Patent Data Analyst",
goal="Extract patent data using optimized SQL queries.",
backstory="Expert in optimized SQL for patent databases.",
llm=llm,
tools=[list_tables, tables_schema, execute_sql],
)
analyst_agent = Agent(
role="Patent Data Analyst",
goal="Analyze the data and produce insights.",
backstory="Data analyst identifying trends.",
llm=llm,
)
writer_agent = Agent(
role="Patent Report Writer",
goal="Summarize patent insights into a report.",
backstory="Expert in clear, concise reporting.",
llm=llm,
)
return sql_agent, analyst_agent, writer_agent
def setup_crew(sql_agent, analyst_agent, writer_agent):
extract_task = Task(
description="Extract patents related to the query: {query}.",
expected_output="Patent data matching the query.",
agent=sql_agent,
)
analyze_task = Task(
description="Analyze the extracted patent data.",
expected_output="Analysis text summarizing findings.",
agent=analyst_agent,
context=[extract_task],
)
report_task = Task(
description="Summarize analysis into a report.",
expected_output="Markdown report of insights.",
agent=writer_agent,
context=[analyze_task],
)
return Crew(
agents=[sql_agent, analyst_agent, writer_agent],
tasks=[extract_task, analyze_task, report_task],
process=Process.sequential,
verbose=True,
)
if st.session_state.df is not None:
db, temp_dir = initialize_database(st.session_state.df)
tools = create_sql_tools(db)
sql_agent, analyst_agent, writer_agent = initialize_agents(llm, tools)
crew = setup_crew(sql_agent, analyst_agent, writer_agent)
query = st.text_area("Enter Patent Analysis Query:", value="How many patents related to Machine Learning were filed after 2016?")
if st.button("Submit Query"):
if query.strip():
with st.spinner("Processing your query..."):
result = crew.kickoff(inputs={"query": query})
st.markdown("### πŸ“Š Patent Analysis Report")
st.markdown(result)
else:
st.warning("Please enter a valid query.")
else:
st.info("Please load a patent dataset to proceed.")