# TODO: Merge this with the webui_app and make it a single app import json import logging import mimetypes import os import shutil import uuid from datetime import datetime from pathlib import Path from typing import Iterator, Optional, Sequence, Union from fastapi import Depends, FastAPI, File, Form, HTTPException, UploadFile, status from fastapi.middleware.cors import CORSMiddleware from pydantic import BaseModel import tiktoken from open_webui.storage.provider import Storage from open_webui.apps.webui.models.knowledge import Knowledges from open_webui.apps.retrieval.vector.connector import VECTOR_DB_CLIENT # Document loaders from open_webui.apps.retrieval.loaders.main import Loader # Web search engines from open_webui.apps.retrieval.web.main import SearchResult from open_webui.apps.retrieval.web.utils import get_web_loader from open_webui.apps.retrieval.web.brave import search_brave from open_webui.apps.retrieval.web.duckduckgo import search_duckduckgo from open_webui.apps.retrieval.web.google_pse import search_google_pse from open_webui.apps.retrieval.web.jina_search import search_jina from open_webui.apps.retrieval.web.searchapi import search_searchapi from open_webui.apps.retrieval.web.searxng import search_searxng from open_webui.apps.retrieval.web.serper import search_serper from open_webui.apps.retrieval.web.serply import search_serply from open_webui.apps.retrieval.web.serpstack import search_serpstack from open_webui.apps.retrieval.web.tavily import search_tavily from open_webui.apps.retrieval.utils import ( get_embedding_function, get_model_path, query_collection, query_collection_with_hybrid_search, query_doc, query_doc_with_hybrid_search, ) from open_webui.apps.webui.models.files import Files from open_webui.config import ( BRAVE_SEARCH_API_KEY, TIKTOKEN_ENCODING_NAME, RAG_TEXT_SPLITTER, CHUNK_OVERLAP, CHUNK_SIZE, CONTENT_EXTRACTION_ENGINE, CORS_ALLOW_ORIGIN, ENABLE_RAG_HYBRID_SEARCH, ENABLE_RAG_LOCAL_WEB_FETCH, ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION, ENABLE_RAG_WEB_SEARCH, ENV, GOOGLE_PSE_API_KEY, GOOGLE_PSE_ENGINE_ID, PDF_EXTRACT_IMAGES, RAG_EMBEDDING_ENGINE, RAG_EMBEDDING_MODEL, RAG_EMBEDDING_MODEL_AUTO_UPDATE, RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE, RAG_EMBEDDING_BATCH_SIZE, RAG_FILE_MAX_COUNT, RAG_FILE_MAX_SIZE, RAG_OPENAI_API_BASE_URL, RAG_OPENAI_API_KEY, RAG_RELEVANCE_THRESHOLD, RAG_RERANKING_MODEL, RAG_RERANKING_MODEL_AUTO_UPDATE, RAG_RERANKING_MODEL_TRUST_REMOTE_CODE, DEFAULT_RAG_TEMPLATE, RAG_TEMPLATE, RAG_TOP_K, RAG_WEB_SEARCH_CONCURRENT_REQUESTS, RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, RAG_WEB_SEARCH_ENGINE, RAG_WEB_SEARCH_RESULT_COUNT, SEARCHAPI_API_KEY, SEARCHAPI_ENGINE, SEARXNG_QUERY_URL, SERPER_API_KEY, SERPLY_API_KEY, SERPSTACK_API_KEY, SERPSTACK_HTTPS, TAVILY_API_KEY, TIKA_SERVER_URL, UPLOAD_DIR, YOUTUBE_LOADER_LANGUAGE, AppConfig, ) from open_webui.constants import ERROR_MESSAGES from open_webui.env import SRC_LOG_LEVELS, DEVICE_TYPE, DOCKER from open_webui.utils.misc import ( calculate_sha256, calculate_sha256_string, extract_folders_after_data_docs, sanitize_filename, ) from open_webui.utils.utils import get_admin_user, get_verified_user from langchain.text_splitter import RecursiveCharacterTextSplitter, TokenTextSplitter from langchain_community.document_loaders import ( YoutubeLoader, ) from langchain_core.documents import Document log = logging.getLogger(__name__) log.setLevel(SRC_LOG_LEVELS["RAG"]) app = FastAPI() app.state.config = AppConfig() app.state.config.TOP_K = RAG_TOP_K app.state.config.RELEVANCE_THRESHOLD = RAG_RELEVANCE_THRESHOLD app.state.config.FILE_MAX_SIZE = RAG_FILE_MAX_SIZE app.state.config.FILE_MAX_COUNT = RAG_FILE_MAX_COUNT app.state.config.ENABLE_RAG_HYBRID_SEARCH = ENABLE_RAG_HYBRID_SEARCH app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION = ( ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION ) app.state.config.CONTENT_EXTRACTION_ENGINE = CONTENT_EXTRACTION_ENGINE app.state.config.TIKA_SERVER_URL = TIKA_SERVER_URL app.state.config.TEXT_SPLITTER = RAG_TEXT_SPLITTER app.state.config.TIKTOKEN_ENCODING_NAME = TIKTOKEN_ENCODING_NAME app.state.config.CHUNK_SIZE = CHUNK_SIZE app.state.config.CHUNK_OVERLAP = CHUNK_OVERLAP app.state.config.RAG_EMBEDDING_ENGINE = RAG_EMBEDDING_ENGINE app.state.config.RAG_EMBEDDING_MODEL = RAG_EMBEDDING_MODEL app.state.config.RAG_EMBEDDING_BATCH_SIZE = RAG_EMBEDDING_BATCH_SIZE app.state.config.RAG_RERANKING_MODEL = RAG_RERANKING_MODEL app.state.config.RAG_TEMPLATE = RAG_TEMPLATE app.state.config.OPENAI_API_BASE_URL = RAG_OPENAI_API_BASE_URL app.state.config.OPENAI_API_KEY = RAG_OPENAI_API_KEY app.state.config.PDF_EXTRACT_IMAGES = PDF_EXTRACT_IMAGES app.state.config.YOUTUBE_LOADER_LANGUAGE = YOUTUBE_LOADER_LANGUAGE app.state.YOUTUBE_LOADER_TRANSLATION = None app.state.config.ENABLE_RAG_WEB_SEARCH = ENABLE_RAG_WEB_SEARCH app.state.config.RAG_WEB_SEARCH_ENGINE = RAG_WEB_SEARCH_ENGINE app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST = RAG_WEB_SEARCH_DOMAIN_FILTER_LIST app.state.config.SEARXNG_QUERY_URL = SEARXNG_QUERY_URL app.state.config.GOOGLE_PSE_API_KEY = GOOGLE_PSE_API_KEY app.state.config.GOOGLE_PSE_ENGINE_ID = GOOGLE_PSE_ENGINE_ID app.state.config.BRAVE_SEARCH_API_KEY = BRAVE_SEARCH_API_KEY app.state.config.SERPSTACK_API_KEY = SERPSTACK_API_KEY app.state.config.SERPSTACK_HTTPS = SERPSTACK_HTTPS app.state.config.SERPER_API_KEY = SERPER_API_KEY app.state.config.SERPLY_API_KEY = SERPLY_API_KEY app.state.config.TAVILY_API_KEY = TAVILY_API_KEY app.state.config.SEARCHAPI_API_KEY = SEARCHAPI_API_KEY app.state.config.SEARCHAPI_ENGINE = SEARCHAPI_ENGINE app.state.config.RAG_WEB_SEARCH_RESULT_COUNT = RAG_WEB_SEARCH_RESULT_COUNT app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS = RAG_WEB_SEARCH_CONCURRENT_REQUESTS def update_embedding_model( embedding_model: str, auto_update: bool = False, ): if embedding_model and app.state.config.RAG_EMBEDDING_ENGINE == "": from sentence_transformers import SentenceTransformer app.state.sentence_transformer_ef = SentenceTransformer( get_model_path(embedding_model, auto_update), device=DEVICE_TYPE, trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE, ) else: app.state.sentence_transformer_ef = None def update_reranking_model( reranking_model: str, auto_update: bool = False, ): if reranking_model: if any(model in reranking_model for model in ["jinaai/jina-colbert-v2"]): try: from open_webui.apps.retrieval.models.colbert import ColBERT app.state.sentence_transformer_rf = ColBERT( get_model_path(reranking_model, auto_update), env="docker" if DOCKER else None, ) except Exception as e: log.error(f"ColBERT: {e}") app.state.sentence_transformer_rf = None app.state.config.ENABLE_RAG_HYBRID_SEARCH = False else: import sentence_transformers try: app.state.sentence_transformer_rf = sentence_transformers.CrossEncoder( get_model_path(reranking_model, auto_update), device=DEVICE_TYPE, trust_remote_code=RAG_RERANKING_MODEL_TRUST_REMOTE_CODE, ) except: log.error("CrossEncoder error") app.state.sentence_transformer_rf = None app.state.config.ENABLE_RAG_HYBRID_SEARCH = False else: app.state.sentence_transformer_rf = None update_embedding_model( app.state.config.RAG_EMBEDDING_MODEL, RAG_EMBEDDING_MODEL_AUTO_UPDATE, ) update_reranking_model( app.state.config.RAG_RERANKING_MODEL, RAG_RERANKING_MODEL_AUTO_UPDATE, ) app.state.EMBEDDING_FUNCTION = get_embedding_function( app.state.config.RAG_EMBEDDING_ENGINE, app.state.config.RAG_EMBEDDING_MODEL, app.state.sentence_transformer_ef, app.state.config.OPENAI_API_KEY, app.state.config.OPENAI_API_BASE_URL, app.state.config.RAG_EMBEDDING_BATCH_SIZE, ) app.add_middleware( CORSMiddleware, allow_origins=CORS_ALLOW_ORIGIN, allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) class CollectionNameForm(BaseModel): collection_name: Optional[str] = None class ProcessUrlForm(CollectionNameForm): url: str class SearchForm(CollectionNameForm): query: str @app.get("/") async def get_status(): return { "status": True, "chunk_size": app.state.config.CHUNK_SIZE, "chunk_overlap": app.state.config.CHUNK_OVERLAP, "template": app.state.config.RAG_TEMPLATE, "embedding_engine": app.state.config.RAG_EMBEDDING_ENGINE, "embedding_model": app.state.config.RAG_EMBEDDING_MODEL, "reranking_model": app.state.config.RAG_RERANKING_MODEL, "embedding_batch_size": app.state.config.RAG_EMBEDDING_BATCH_SIZE, } @app.get("/embedding") async def get_embedding_config(user=Depends(get_admin_user)): return { "status": True, "embedding_engine": app.state.config.RAG_EMBEDDING_ENGINE, "embedding_model": app.state.config.RAG_EMBEDDING_MODEL, "embedding_batch_size": app.state.config.RAG_EMBEDDING_BATCH_SIZE, "openai_config": { "url": app.state.config.OPENAI_API_BASE_URL, "key": app.state.config.OPENAI_API_KEY, }, } @app.get("/reranking") async def get_reraanking_config(user=Depends(get_admin_user)): return { "status": True, "reranking_model": app.state.config.RAG_RERANKING_MODEL, } class OpenAIConfigForm(BaseModel): url: str key: str class EmbeddingModelUpdateForm(BaseModel): openai_config: Optional[OpenAIConfigForm] = None embedding_engine: str embedding_model: str embedding_batch_size: Optional[int] = 1 @app.post("/embedding/update") async def update_embedding_config( form_data: EmbeddingModelUpdateForm, user=Depends(get_admin_user) ): log.info( f"Updating embedding model: {app.state.config.RAG_EMBEDDING_MODEL} to {form_data.embedding_model}" ) try: app.state.config.RAG_EMBEDDING_ENGINE = form_data.embedding_engine app.state.config.RAG_EMBEDDING_MODEL = form_data.embedding_model if app.state.config.RAG_EMBEDDING_ENGINE in ["ollama", "openai"]: if form_data.openai_config is not None: app.state.config.OPENAI_API_BASE_URL = form_data.openai_config.url app.state.config.OPENAI_API_KEY = form_data.openai_config.key app.state.config.RAG_EMBEDDING_BATCH_SIZE = form_data.embedding_batch_size update_embedding_model(app.state.config.RAG_EMBEDDING_MODEL) app.state.EMBEDDING_FUNCTION = get_embedding_function( app.state.config.RAG_EMBEDDING_ENGINE, app.state.config.RAG_EMBEDDING_MODEL, app.state.sentence_transformer_ef, app.state.config.OPENAI_API_KEY, app.state.config.OPENAI_API_BASE_URL, app.state.config.RAG_EMBEDDING_BATCH_SIZE, ) return { "status": True, "embedding_engine": app.state.config.RAG_EMBEDDING_ENGINE, "embedding_model": app.state.config.RAG_EMBEDDING_MODEL, "embedding_batch_size": app.state.config.RAG_EMBEDDING_BATCH_SIZE, "openai_config": { "url": app.state.config.OPENAI_API_BASE_URL, "key": app.state.config.OPENAI_API_KEY, }, } except Exception as e: log.exception(f"Problem updating embedding model: {e}") raise HTTPException( status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=ERROR_MESSAGES.DEFAULT(e), ) class RerankingModelUpdateForm(BaseModel): reranking_model: str @app.post("/reranking/update") async def update_reranking_config( form_data: RerankingModelUpdateForm, user=Depends(get_admin_user) ): log.info( f"Updating reranking model: {app.state.config.RAG_RERANKING_MODEL} to {form_data.reranking_model}" ) try: app.state.config.RAG_RERANKING_MODEL = form_data.reranking_model update_reranking_model(app.state.config.RAG_RERANKING_MODEL, True) return { "status": True, "reranking_model": app.state.config.RAG_RERANKING_MODEL, } except Exception as e: log.exception(f"Problem updating reranking model: {e}") raise HTTPException( status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=ERROR_MESSAGES.DEFAULT(e), ) @app.get("/config") async def get_rag_config(user=Depends(get_admin_user)): return { "status": True, "pdf_extract_images": app.state.config.PDF_EXTRACT_IMAGES, "content_extraction": { "engine": app.state.config.CONTENT_EXTRACTION_ENGINE, "tika_server_url": app.state.config.TIKA_SERVER_URL, }, "chunk": { "text_splitter": app.state.config.TEXT_SPLITTER, "chunk_size": app.state.config.CHUNK_SIZE, "chunk_overlap": app.state.config.CHUNK_OVERLAP, }, "file": { "max_size": app.state.config.FILE_MAX_SIZE, "max_count": app.state.config.FILE_MAX_COUNT, }, "youtube": { "language": app.state.config.YOUTUBE_LOADER_LANGUAGE, "translation": app.state.YOUTUBE_LOADER_TRANSLATION, }, "web": { "ssl_verification": app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION, "search": { "enabled": app.state.config.ENABLE_RAG_WEB_SEARCH, "engine": app.state.config.RAG_WEB_SEARCH_ENGINE, "searxng_query_url": app.state.config.SEARXNG_QUERY_URL, "google_pse_api_key": app.state.config.GOOGLE_PSE_API_KEY, "google_pse_engine_id": app.state.config.GOOGLE_PSE_ENGINE_ID, "brave_search_api_key": app.state.config.BRAVE_SEARCH_API_KEY, "serpstack_api_key": app.state.config.SERPSTACK_API_KEY, "serpstack_https": app.state.config.SERPSTACK_HTTPS, "serper_api_key": app.state.config.SERPER_API_KEY, "serply_api_key": app.state.config.SERPLY_API_KEY, "tavily_api_key": app.state.config.TAVILY_API_KEY, "searchapi_api_key": app.state.config.SEARCHAPI_API_KEY, "seaarchapi_engine": app.state.config.SEARCHAPI_ENGINE, "result_count": app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, "concurrent_requests": app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS, }, }, } class FileConfig(BaseModel): max_size: Optional[int] = None max_count: Optional[int] = None class ContentExtractionConfig(BaseModel): engine: str = "" tika_server_url: Optional[str] = None class ChunkParamUpdateForm(BaseModel): text_splitter: Optional[str] = None chunk_size: int chunk_overlap: int class YoutubeLoaderConfig(BaseModel): language: list[str] translation: Optional[str] = None class WebSearchConfig(BaseModel): enabled: bool engine: Optional[str] = None searxng_query_url: Optional[str] = None google_pse_api_key: Optional[str] = None google_pse_engine_id: Optional[str] = None brave_search_api_key: Optional[str] = None serpstack_api_key: Optional[str] = None serpstack_https: Optional[bool] = None serper_api_key: Optional[str] = None serply_api_key: Optional[str] = None tavily_api_key: Optional[str] = None searchapi_api_key: Optional[str] = None searchapi_engine: Optional[str] = None result_count: Optional[int] = None concurrent_requests: Optional[int] = None class WebConfig(BaseModel): search: WebSearchConfig web_loader_ssl_verification: Optional[bool] = None class ConfigUpdateForm(BaseModel): pdf_extract_images: Optional[bool] = None file: Optional[FileConfig] = None content_extraction: Optional[ContentExtractionConfig] = None chunk: Optional[ChunkParamUpdateForm] = None youtube: Optional[YoutubeLoaderConfig] = None web: Optional[WebConfig] = None @app.post("/config/update") async def update_rag_config(form_data: ConfigUpdateForm, user=Depends(get_admin_user)): app.state.config.PDF_EXTRACT_IMAGES = ( form_data.pdf_extract_images if form_data.pdf_extract_images is not None else app.state.config.PDF_EXTRACT_IMAGES ) if form_data.file is not None: app.state.config.FILE_MAX_SIZE = form_data.file.max_size app.state.config.FILE_MAX_COUNT = form_data.file.max_count if form_data.content_extraction is not None: log.info(f"Updating text settings: {form_data.content_extraction}") app.state.config.CONTENT_EXTRACTION_ENGINE = form_data.content_extraction.engine app.state.config.TIKA_SERVER_URL = form_data.content_extraction.tika_server_url if form_data.chunk is not None: app.state.config.TEXT_SPLITTER = form_data.chunk.text_splitter app.state.config.CHUNK_SIZE = form_data.chunk.chunk_size app.state.config.CHUNK_OVERLAP = form_data.chunk.chunk_overlap if form_data.youtube is not None: app.state.config.YOUTUBE_LOADER_LANGUAGE = form_data.youtube.language app.state.YOUTUBE_LOADER_TRANSLATION = form_data.youtube.translation if form_data.web is not None: app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION = ( form_data.web.web_loader_ssl_verification ) app.state.config.ENABLE_RAG_WEB_SEARCH = form_data.web.search.enabled app.state.config.RAG_WEB_SEARCH_ENGINE = form_data.web.search.engine app.state.config.SEARXNG_QUERY_URL = form_data.web.search.searxng_query_url app.state.config.GOOGLE_PSE_API_KEY = form_data.web.search.google_pse_api_key app.state.config.GOOGLE_PSE_ENGINE_ID = ( form_data.web.search.google_pse_engine_id ) app.state.config.BRAVE_SEARCH_API_KEY = ( form_data.web.search.brave_search_api_key ) app.state.config.SERPSTACK_API_KEY = form_data.web.search.serpstack_api_key app.state.config.SERPSTACK_HTTPS = form_data.web.search.serpstack_https app.state.config.SERPER_API_KEY = form_data.web.search.serper_api_key app.state.config.SERPLY_API_KEY = form_data.web.search.serply_api_key app.state.config.TAVILY_API_KEY = form_data.web.search.tavily_api_key app.state.config.SEARCHAPI_API_KEY = form_data.web.search.searchapi_api_key app.state.config.SEARCHAPI_ENGINE = form_data.web.search.searchapi_engine app.state.config.RAG_WEB_SEARCH_RESULT_COUNT = form_data.web.search.result_count app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS = ( form_data.web.search.concurrent_requests ) return { "status": True, "pdf_extract_images": app.state.config.PDF_EXTRACT_IMAGES, "file": { "max_size": app.state.config.FILE_MAX_SIZE, "max_count": app.state.config.FILE_MAX_COUNT, }, "content_extraction": { "engine": app.state.config.CONTENT_EXTRACTION_ENGINE, "tika_server_url": app.state.config.TIKA_SERVER_URL, }, "chunk": { "text_splitter": app.state.config.TEXT_SPLITTER, "chunk_size": app.state.config.CHUNK_SIZE, "chunk_overlap": app.state.config.CHUNK_OVERLAP, }, "youtube": { "language": app.state.config.YOUTUBE_LOADER_LANGUAGE, "translation": app.state.YOUTUBE_LOADER_TRANSLATION, }, "web": { "ssl_verification": app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION, "search": { "enabled": app.state.config.ENABLE_RAG_WEB_SEARCH, "engine": app.state.config.RAG_WEB_SEARCH_ENGINE, "searxng_query_url": app.state.config.SEARXNG_QUERY_URL, "google_pse_api_key": app.state.config.GOOGLE_PSE_API_KEY, "google_pse_engine_id": app.state.config.GOOGLE_PSE_ENGINE_ID, "brave_search_api_key": app.state.config.BRAVE_SEARCH_API_KEY, "serpstack_api_key": app.state.config.SERPSTACK_API_KEY, "serpstack_https": app.state.config.SERPSTACK_HTTPS, "serper_api_key": app.state.config.SERPER_API_KEY, "serply_api_key": app.state.config.SERPLY_API_KEY, "serachapi_api_key": app.state.config.SEARCHAPI_API_KEY, "searchapi_engine": app.state.config.SEARCHAPI_ENGINE, "tavily_api_key": app.state.config.TAVILY_API_KEY, "result_count": app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, "concurrent_requests": app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS, }, }, } @app.get("/template") async def get_rag_template(user=Depends(get_verified_user)): return { "status": True, "template": app.state.config.RAG_TEMPLATE, } @app.get("/query/settings") async def get_query_settings(user=Depends(get_admin_user)): return { "status": True, "template": app.state.config.RAG_TEMPLATE, "k": app.state.config.TOP_K, "r": app.state.config.RELEVANCE_THRESHOLD, "hybrid": app.state.config.ENABLE_RAG_HYBRID_SEARCH, } class QuerySettingsForm(BaseModel): k: Optional[int] = None r: Optional[float] = None template: Optional[str] = None hybrid: Optional[bool] = None @app.post("/query/settings/update") async def update_query_settings( form_data: QuerySettingsForm, user=Depends(get_admin_user) ): app.state.config.RAG_TEMPLATE = form_data.template app.state.config.TOP_K = form_data.k if form_data.k else 4 app.state.config.RELEVANCE_THRESHOLD = form_data.r if form_data.r else 0.0 app.state.config.ENABLE_RAG_HYBRID_SEARCH = ( form_data.hybrid if form_data.hybrid else False ) return { "status": True, "template": app.state.config.RAG_TEMPLATE, "k": app.state.config.TOP_K, "r": app.state.config.RELEVANCE_THRESHOLD, "hybrid": app.state.config.ENABLE_RAG_HYBRID_SEARCH, } #################################### # # Document process and retrieval # #################################### def save_docs_to_vector_db( docs, collection_name, metadata: Optional[dict] = None, overwrite: bool = False, split: bool = True, add: bool = False, ) -> bool: log.info(f"save_docs_to_vector_db {docs} {collection_name}") # Check if entries with the same hash (metadata.hash) already exist if metadata and "hash" in metadata: result = VECTOR_DB_CLIENT.query( collection_name=collection_name, filter={"hash": metadata["hash"]}, ) if result is not None: existing_doc_ids = result.ids[0] if existing_doc_ids: log.info(f"Document with hash {metadata['hash']} already exists") raise ValueError(ERROR_MESSAGES.DUPLICATE_CONTENT) if split: if app.state.config.TEXT_SPLITTER in ["", "character"]: text_splitter = RecursiveCharacterTextSplitter( chunk_size=app.state.config.CHUNK_SIZE, chunk_overlap=app.state.config.CHUNK_OVERLAP, add_start_index=True, ) elif app.state.config.TEXT_SPLITTER == "token": log.info( f"Using token text splitter: {app.state.config.TIKTOKEN_ENCODING_NAME}" ) tiktoken.get_encoding(str(app.state.config.TIKTOKEN_ENCODING_NAME)) text_splitter = TokenTextSplitter( encoding_name=str(app.state.config.TIKTOKEN_ENCODING_NAME), chunk_size=app.state.config.CHUNK_SIZE, chunk_overlap=app.state.config.CHUNK_OVERLAP, add_start_index=True, ) else: raise ValueError(ERROR_MESSAGES.DEFAULT("Invalid text splitter")) docs = text_splitter.split_documents(docs) if len(docs) == 0: raise ValueError(ERROR_MESSAGES.EMPTY_CONTENT) texts = [doc.page_content for doc in docs] metadatas = [ { **doc.metadata, **(metadata if metadata else {}), "embedding_config": json.dumps( { "engine": app.state.config.RAG_EMBEDDING_ENGINE, "model": app.state.config.RAG_EMBEDDING_MODEL, } ), } for doc in docs ] # ChromaDB does not like datetime formats # for meta-data so convert them to string. for metadata in metadatas: for key, value in metadata.items(): if isinstance(value, datetime): metadata[key] = str(value) try: if VECTOR_DB_CLIENT.has_collection(collection_name=collection_name): log.info(f"collection {collection_name} already exists") if overwrite: VECTOR_DB_CLIENT.delete_collection(collection_name=collection_name) log.info(f"deleting existing collection {collection_name}") elif add is False: log.info( f"collection {collection_name} already exists, overwrite is False and add is False" ) return True log.info(f"adding to collection {collection_name}") embedding_function = get_embedding_function( app.state.config.RAG_EMBEDDING_ENGINE, app.state.config.RAG_EMBEDDING_MODEL, app.state.sentence_transformer_ef, app.state.config.OPENAI_API_KEY, app.state.config.OPENAI_API_BASE_URL, app.state.config.RAG_EMBEDDING_BATCH_SIZE, ) embeddings = embedding_function( list(map(lambda x: x.replace("\n", " "), texts)) ) items = [ { "id": str(uuid.uuid4()), "text": text, "vector": embeddings[idx], "metadata": metadatas[idx], } for idx, text in enumerate(texts) ] VECTOR_DB_CLIENT.insert( collection_name=collection_name, items=items, ) return True except Exception as e: log.exception(e) return False class ProcessFileForm(BaseModel): file_id: str content: Optional[str] = None collection_name: Optional[str] = None @app.post("/process/file") def process_file( form_data: ProcessFileForm, user=Depends(get_verified_user), ): try: file = Files.get_file_by_id(form_data.file_id) collection_name = form_data.collection_name if collection_name is None: collection_name = f"file-{file.id}" if form_data.content: # Update the content in the file # Usage: /files/{file_id}/data/content/update VECTOR_DB_CLIENT.delete( collection_name=f"file-{file.id}", filter={"file_id": file.id}, ) docs = [ Document( page_content=form_data.content, metadata={ "name": file.meta.get("name", file.filename), "created_by": file.user_id, "file_id": file.id, **file.meta, }, ) ] text_content = form_data.content elif form_data.collection_name: # Check if the file has already been processed and save the content # Usage: /knowledge/{id}/file/add, /knowledge/{id}/file/update result = VECTOR_DB_CLIENT.query( collection_name=f"file-{file.id}", filter={"file_id": file.id} ) if result is not None and len(result.ids[0]) > 0: docs = [ Document( page_content=result.documents[0][idx], metadata=result.metadatas[0][idx], ) for idx, id in enumerate(result.ids[0]) ] else: docs = [ Document( page_content=file.data.get("content", ""), metadata={ "name": file.meta.get("name", file.filename), "created_by": file.user_id, "file_id": file.id, **file.meta, }, ) ] text_content = file.data.get("content", "") else: # Process the file and save the content # Usage: /files/ file_path = file.path if file_path: file_path = Storage.get_file(file_path) loader = Loader( engine=app.state.config.CONTENT_EXTRACTION_ENGINE, TIKA_SERVER_URL=app.state.config.TIKA_SERVER_URL, PDF_EXTRACT_IMAGES=app.state.config.PDF_EXTRACT_IMAGES, ) docs = loader.load( file.filename, file.meta.get("content_type"), file_path ) else: docs = [ Document( page_content=file.data.get("content", ""), metadata={ "name": file.filename, "created_by": file.user_id, "file_id": file.id, **file.meta, }, ) ] text_content = " ".join([doc.page_content for doc in docs]) log.debug(f"text_content: {text_content}") Files.update_file_data_by_id( file.id, {"content": text_content}, ) hash = calculate_sha256_string(text_content) Files.update_file_hash_by_id(file.id, hash) try: result = save_docs_to_vector_db( docs=docs, collection_name=collection_name, metadata={ "file_id": file.id, "name": file.meta.get("name", file.filename), "hash": hash, }, add=(True if form_data.collection_name else False), ) if result: Files.update_file_metadata_by_id( file.id, { "collection_name": collection_name, }, ) return { "status": True, "collection_name": collection_name, "filename": file.meta.get("name", file.filename), "content": text_content, } except Exception as e: raise e except Exception as e: log.exception(e) if "No pandoc was found" in str(e): raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail=ERROR_MESSAGES.PANDOC_NOT_INSTALLED, ) else: raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail=str(e), ) class ProcessTextForm(BaseModel): name: str content: str collection_name: Optional[str] = None @app.post("/process/text") def process_text( form_data: ProcessTextForm, user=Depends(get_verified_user), ): collection_name = form_data.collection_name if collection_name is None: collection_name = calculate_sha256_string(form_data.content) docs = [ Document( page_content=form_data.content, metadata={"name": form_data.name, "created_by": user.id}, ) ] text_content = form_data.content log.debug(f"text_content: {text_content}") result = save_docs_to_vector_db(docs, collection_name) if result: return { "status": True, "collection_name": collection_name, "content": text_content, } else: raise HTTPException( status_code=status.HTTP_500_INTERNAL_SERVER_ERROR, detail=ERROR_MESSAGES.DEFAULT(), ) @app.post("/process/youtube") def process_youtube_video(form_data: ProcessUrlForm, user=Depends(get_verified_user)): try: collection_name = form_data.collection_name if not collection_name: collection_name = calculate_sha256_string(form_data.url)[:63] loader = YoutubeLoader.from_youtube_url( form_data.url, add_video_info=True, language=app.state.config.YOUTUBE_LOADER_LANGUAGE, translation=app.state.YOUTUBE_LOADER_TRANSLATION, ) docs = loader.load() content = " ".join([doc.page_content for doc in docs]) log.debug(f"text_content: {content}") save_docs_to_vector_db(docs, collection_name, overwrite=True) return { "status": True, "collection_name": collection_name, "filename": form_data.url, "file": { "data": { "content": content, }, "meta": { "name": form_data.url, }, }, } except Exception as e: log.exception(e) raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail=ERROR_MESSAGES.DEFAULT(e), ) @app.post("/process/web") def process_web(form_data: ProcessUrlForm, user=Depends(get_verified_user)): try: collection_name = form_data.collection_name if not collection_name: collection_name = calculate_sha256_string(form_data.url)[:63] loader = get_web_loader( form_data.url, verify_ssl=app.state.config.ENABLE_RAG_WEB_LOADER_SSL_VERIFICATION, requests_per_second=app.state.config.RAG_WEB_SEARCH_CONCURRENT_REQUESTS, ) docs = loader.load() content = " ".join([doc.page_content for doc in docs]) log.debug(f"text_content: {content}") save_docs_to_vector_db(docs, collection_name, overwrite=True) return { "status": True, "collection_name": collection_name, "filename": form_data.url, "file": { "data": { "content": content, }, "meta": { "name": form_data.url, }, }, } except Exception as e: log.exception(e) raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail=ERROR_MESSAGES.DEFAULT(e), ) def search_web(engine: str, query: str) -> list[SearchResult]: """Search the web using a search engine and return the results as a list of SearchResult objects. Will look for a search engine API key in environment variables in the following order: - SEARXNG_QUERY_URL - GOOGLE_PSE_API_KEY + GOOGLE_PSE_ENGINE_ID - BRAVE_SEARCH_API_KEY - SERPSTACK_API_KEY - SERPER_API_KEY - SERPLY_API_KEY - TAVILY_API_KEY - SEARCHAPI_API_KEY + SEARCHAPI_ENGINE (by default `google`) Args: query (str): The query to search for """ # TODO: add playwright to search the web if engine == "searxng": if app.state.config.SEARXNG_QUERY_URL: return search_searxng( app.state.config.SEARXNG_QUERY_URL, query, app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, ) else: raise Exception("No SEARXNG_QUERY_URL found in environment variables") elif engine == "google_pse": if ( app.state.config.GOOGLE_PSE_API_KEY and app.state.config.GOOGLE_PSE_ENGINE_ID ): return search_google_pse( app.state.config.GOOGLE_PSE_API_KEY, app.state.config.GOOGLE_PSE_ENGINE_ID, query, app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, ) else: raise Exception( "No GOOGLE_PSE_API_KEY or GOOGLE_PSE_ENGINE_ID found in environment variables" ) elif engine == "brave": if app.state.config.BRAVE_SEARCH_API_KEY: return search_brave( app.state.config.BRAVE_SEARCH_API_KEY, query, app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, ) else: raise Exception("No BRAVE_SEARCH_API_KEY found in environment variables") elif engine == "serpstack": if app.state.config.SERPSTACK_API_KEY: return search_serpstack( app.state.config.SERPSTACK_API_KEY, query, app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, https_enabled=app.state.config.SERPSTACK_HTTPS, ) else: raise Exception("No SERPSTACK_API_KEY found in environment variables") elif engine == "serper": if app.state.config.SERPER_API_KEY: return search_serper( app.state.config.SERPER_API_KEY, query, app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, ) else: raise Exception("No SERPER_API_KEY found in environment variables") elif engine == "serply": if app.state.config.SERPLY_API_KEY: return search_serply( app.state.config.SERPLY_API_KEY, query, app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, ) else: raise Exception("No SERPLY_API_KEY found in environment variables") elif engine == "duckduckgo": return search_duckduckgo( query, app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, ) elif engine == "tavily": if app.state.config.TAVILY_API_KEY: return search_tavily( app.state.config.TAVILY_API_KEY, query, app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, ) else: raise Exception("No TAVILY_API_KEY found in environment variables") elif engine == "searchapi": if app.state.config.SEARCHAPI_API_KEY: return search_searchapi( app.state.config.SEARCHAPI_API_KEY, app.state.config.SEARCHAPI_ENGINE, query, app.state.config.RAG_WEB_SEARCH_RESULT_COUNT, app.state.config.RAG_WEB_SEARCH_DOMAIN_FILTER_LIST, ) else: raise Exception("No SEARCHAPI_API_KEY found in environment variables") elif engine == "jina": return search_jina(query, app.state.config.RAG_WEB_SEARCH_RESULT_COUNT) else: raise Exception("No search engine API key found in environment variables") @app.post("/process/web/search") def process_web_search(form_data: SearchForm, user=Depends(get_verified_user)): try: logging.info( f"trying to web search with {app.state.config.RAG_WEB_SEARCH_ENGINE, form_data.query}" ) web_results = search_web( app.state.config.RAG_WEB_SEARCH_ENGINE, form_data.query ) except Exception as e: log.exception(e) print(e) raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail=ERROR_MESSAGES.WEB_SEARCH_ERROR(e), ) try: collection_name = form_data.collection_name if collection_name == "": collection_name = calculate_sha256_string(form_data.query)[:63] urls = [result.link for result in web_results] loader = get_web_loader(urls) docs = loader.load() save_docs_to_vector_db(docs, collection_name, overwrite=True) return { "status": True, "collection_name": collection_name, "filenames": urls, } except Exception as e: log.exception(e) raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail=ERROR_MESSAGES.DEFAULT(e), ) class QueryDocForm(BaseModel): collection_name: str query: str k: Optional[int] = None r: Optional[float] = None hybrid: Optional[bool] = None @app.post("/query/doc") def query_doc_handler( form_data: QueryDocForm, user=Depends(get_verified_user), ): try: if app.state.config.ENABLE_RAG_HYBRID_SEARCH: return query_doc_with_hybrid_search( collection_name=form_data.collection_name, query=form_data.query, embedding_function=app.state.EMBEDDING_FUNCTION, k=form_data.k if form_data.k else app.state.config.TOP_K, reranking_function=app.state.sentence_transformer_rf, r=( form_data.r if form_data.r else app.state.config.RELEVANCE_THRESHOLD ), ) else: return query_doc( collection_name=form_data.collection_name, query=form_data.query, embedding_function=app.state.EMBEDDING_FUNCTION, k=form_data.k if form_data.k else app.state.config.TOP_K, ) except Exception as e: log.exception(e) raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail=ERROR_MESSAGES.DEFAULT(e), ) class QueryCollectionsForm(BaseModel): collection_names: list[str] query: str k: Optional[int] = None r: Optional[float] = None hybrid: Optional[bool] = None @app.post("/query/collection") def query_collection_handler( form_data: QueryCollectionsForm, user=Depends(get_verified_user), ): try: if app.state.config.ENABLE_RAG_HYBRID_SEARCH: return query_collection_with_hybrid_search( collection_names=form_data.collection_names, query=form_data.query, embedding_function=app.state.EMBEDDING_FUNCTION, k=form_data.k if form_data.k else app.state.config.TOP_K, reranking_function=app.state.sentence_transformer_rf, r=( form_data.r if form_data.r else app.state.config.RELEVANCE_THRESHOLD ), ) else: return query_collection( collection_names=form_data.collection_names, query=form_data.query, embedding_function=app.state.EMBEDDING_FUNCTION, k=form_data.k if form_data.k else app.state.config.TOP_K, ) except Exception as e: log.exception(e) raise HTTPException( status_code=status.HTTP_400_BAD_REQUEST, detail=ERROR_MESSAGES.DEFAULT(e), ) #################################### # # Vector DB operations # #################################### class DeleteForm(BaseModel): collection_name: str file_id: str @app.post("/delete") def delete_entries_from_collection(form_data: DeleteForm, user=Depends(get_admin_user)): try: if VECTOR_DB_CLIENT.has_collection(collection_name=form_data.collection_name): file = Files.get_file_by_id(form_data.file_id) hash = file.hash VECTOR_DB_CLIENT.delete( collection_name=form_data.collection_name, metadata={"hash": hash}, ) return {"status": True} else: return {"status": False} except Exception as e: log.exception(e) return {"status": False} @app.post("/reset/db") def reset_vector_db(user=Depends(get_admin_user)): VECTOR_DB_CLIENT.reset() Knowledges.delete_all_knowledge() @app.post("/reset/uploads") def reset_upload_dir(user=Depends(get_admin_user)) -> bool: folder = f"{UPLOAD_DIR}" try: # Check if the directory exists if os.path.exists(folder): # Iterate over all the files and directories in the specified directory for filename in os.listdir(folder): file_path = os.path.join(folder, filename) try: if os.path.isfile(file_path) or os.path.islink(file_path): os.unlink(file_path) # Remove the file or link elif os.path.isdir(file_path): shutil.rmtree(file_path) # Remove the directory except Exception as e: print(f"Failed to delete {file_path}. Reason: {e}") else: print(f"The directory {folder} does not exist") except Exception as e: print(f"Failed to process the directory {folder}. Reason: {e}") return True if ENV == "dev": @app.get("/ef") async def get_embeddings(): return {"result": app.state.EMBEDDING_FUNCTION("hello world")} @app.get("/ef/{text}") async def get_embeddings_text(text: str): return {"result": app.state.EMBEDDING_FUNCTION(text)}