DontPlanToEnd
commited on
Commit
β’
2d0ea6b
1
Parent(s):
c5068fa
Update app.py
Browse files
app.py
CHANGED
@@ -29,7 +29,7 @@ custom_css = """
|
|
29 |
|
30 |
# Define the columns for the different leaderboards
|
31 |
UGI_COLS = ['#P', 'Model', 'UGI π', 'W/10 π', 'Unruly', 'Internet', 'Stats', 'Writing', 'PolContro']
|
32 |
-
WRITING_STYLE_COLS = ['#P', 'Model', '
|
33 |
ANIME_RATING_COLS = ['#P', 'Model', 'Score π', 'Dif', 'Cor', 'Std']
|
34 |
|
35 |
# Load the leaderboard data from a CSV file
|
@@ -147,7 +147,7 @@ with GraInter:
|
|
147 |
""")
|
148 |
|
149 |
with gr.TabItem("Writing Style"):
|
150 |
-
leaderboard_df_ws = leaderboard_df.sort_values(by='
|
151 |
datatypes_ws = ['html' if col == 'Model' else 'str' for col in WRITING_STYLE_COLS]
|
152 |
leaderboard_table_ws = gr.Dataframe(
|
153 |
value=leaderboard_df_ws[WRITING_STYLE_COLS],
|
@@ -158,7 +158,7 @@ with GraInter:
|
|
158 |
)
|
159 |
|
160 |
gr.Markdown("""
|
161 |
-
This is a leaderboard of one of the questions from the UGI-Leaderboard. It doesn't use the decensoring system prompt the other questions do.
|
162 |
<br>
|
163 |
*This leaderboard will change over time as I improve the model's predictive accuracy and as I get new data to train it on.*
|
164 |
<br><br>
|
@@ -166,9 +166,9 @@ with GraInter:
|
|
166 |
<br>
|
167 |
**MyScore:** After generating the story, I give it a rating from 0 to 1 on how well written it was and how well it followed the prompt.
|
168 |
<br>
|
169 |
-
**
|
170 |
<br>
|
171 |
-
**
|
172 |
<br><br>
|
173 |
Below are three of the metrics used which may be useful by themselves at detecting certain writing styles.
|
174 |
<br>
|
@@ -227,7 +227,7 @@ with GraInter:
|
|
227 |
def update_all_tables(query, param_ranges):
|
228 |
ugi_table = update_table(leaderboard_df, query, param_ranges, UGI_COLS)
|
229 |
|
230 |
-
ws_df = leaderboard_df.sort_values(by='
|
231 |
ws_table = update_table(ws_df, query, param_ranges, WRITING_STYLE_COLS)
|
232 |
|
233 |
arp_df = leaderboard_df.sort_values(by='Score π', ascending=False)
|
|
|
29 |
|
30 |
# Define the columns for the different leaderboards
|
31 |
UGI_COLS = ['#P', 'Model', 'UGI π', 'W/10 π', 'Unruly', 'Internet', 'Stats', 'Writing', 'PolContro']
|
32 |
+
WRITING_STYLE_COLS = ['#P', 'Model', 'Reg+MyScore π', 'Reg π', 'MyScore π', 'ASSSβ¬οΈ', 'SMOGβ¬οΈ', 'Yuleβ¬οΈ']
|
33 |
ANIME_RATING_COLS = ['#P', 'Model', 'Score π', 'Dif', 'Cor', 'Std']
|
34 |
|
35 |
# Load the leaderboard data from a CSV file
|
|
|
147 |
""")
|
148 |
|
149 |
with gr.TabItem("Writing Style"):
|
150 |
+
leaderboard_df_ws = leaderboard_df.sort_values(by='Reg+MyScore π', ascending=False)
|
151 |
datatypes_ws = ['html' if col == 'Model' else 'str' for col in WRITING_STYLE_COLS]
|
152 |
leaderboard_table_ws = gr.Dataframe(
|
153 |
value=leaderboard_df_ws[WRITING_STYLE_COLS],
|
|
|
158 |
)
|
159 |
|
160 |
gr.Markdown("""
|
161 |
+
This is a leaderboard of one of the questions from the UGI-Leaderboard. It doesn't use the decensoring system prompt the other questions do. Only the regression output is used in the UGI-Leaderboard.
|
162 |
<br>
|
163 |
*This leaderboard will change over time as I improve the model's predictive accuracy and as I get new data to train it on.*
|
164 |
<br><br>
|
|
|
166 |
<br>
|
167 |
**MyScore:** After generating the story, I give it a rating from 0 to 1 on how well written it was and how well it followed the prompt.
|
168 |
<br>
|
169 |
+
**Reg:** Using 13 unique lexical analysis metrics as the input and my scores as the output, I trained a regression model to recognize what types of writing styles people like. To have a better seperation between model sizes, I weighted it by UGI intelligence-focused questions.
|
170 |
<br>
|
171 |
+
**Reg+MyScore:** The average between Reg and MyScore.
|
172 |
<br><br>
|
173 |
Below are three of the metrics used which may be useful by themselves at detecting certain writing styles.
|
174 |
<br>
|
|
|
227 |
def update_all_tables(query, param_ranges):
|
228 |
ugi_table = update_table(leaderboard_df, query, param_ranges, UGI_COLS)
|
229 |
|
230 |
+
ws_df = leaderboard_df.sort_values(by='Reg+MyScore π', ascending=False)
|
231 |
ws_table = update_table(ws_df, query, param_ranges, WRITING_STYLE_COLS)
|
232 |
|
233 |
arp_df = leaderboard_df.sort_values(by='Score π', ascending=False)
|