UGI-Leaderboard / app.py
DontPlanToEnd's picture
Create app.py
38d6ba2 verified
raw
history blame
5.49 kB
import gradio as gr
import pandas as pd
# Define the columns for the UGI Leaderboard
UGI_COLS = [
'#P', 'Model', 'UGI 🏆', 'Willingness👍', 'QuActivities', 'Internet', 'CrimeStats', 'Stories/Jokes', 'Pol Contro'
]
# Load the leaderboard data from a CSV file
def load_leaderboard_data(csv_file_path):
try:
df = pd.read_csv(csv_file_path)
# Create hyperlinks in the Model column using HTML <a> tags with inline CSS for styling
df['Model'] = df.apply(lambda row: f'<a href="{row["Link"]}" target="_blank" style="color: blue; text-decoration: none;">{row["Model"]}</a>' if pd.notna(row["Link"]) else row["Model"], axis=1)
# Drop the 'Link' column as it's no longer needed
df.drop(columns=['Link'], inplace=True)
return df
except Exception as e:
print(f"Error loading CSV file: {e}")
return pd.DataFrame(columns=UGI_COLS) # Return an empty dataframe with the correct columns
# Update the leaderboard table based on the search query and parameter range filters
def update_table(df: pd.DataFrame, query: str, param_ranges: dict) -> pd.DataFrame:
filtered_df = df
if any(param_ranges.values()):
conditions = []
for param_range, checked in param_ranges.items():
if checked:
if param_range == '~1.5':
conditions.append((filtered_df['Params'] < 2.5))
elif param_range == '~3':
conditions.append(((filtered_df['Params'] >= 2.5) & (filtered_df['Params'] < 6)))
elif param_range == '~7':
conditions.append(((filtered_df['Params'] >= 6) & (filtered_df['Params'] < 9.5)))
elif param_range == '~13':
conditions.append(((filtered_df['Params'] >= 9.5) & (filtered_df['Params'] < 16)))
elif param_range == '~20':
conditions.append(((filtered_df['Params'] >= 16) & (filtered_df['Params'] < 28)))
elif param_range == '~34':
conditions.append(((filtered_df['Params'] >= 28) & (filtered_df['Params'] < 40)))
elif param_range == '~50':
conditions.append(((filtered_df['Params'] >= 40) & (filtered_df['Params'] < 60)))
elif param_range == '~70+':
conditions.append((filtered_df['Params'] >= 60))
if all(param_ranges.values()):
conditions.append(filtered_df['Params'].isna())
filtered_df = filtered_df[pd.concat(conditions, axis=1).any(axis=1)]
if query:
filtered_df = filtered_df[filtered_df.apply(lambda row: query.lower() in row.to_string().lower(), axis=1)]
return filtered_df[UGI_COLS] # Return only the columns defined in UGI_COLS
# Define the Gradio interface
demo = gr.Blocks()
with demo:
gr.Markdown("## UGI Leaderboard", elem_classes="text-lg")
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(placeholder=" 🔍 Search for a model...", show_label=False)
with gr.Row():
gr.Markdown("Model sizes (in billions of parameters)", elem_classes="text-sm")
param_range_1 = gr.Checkbox(label="~1.5", value=False)
param_range_2 = gr.Checkbox(label="~3", value=False)
param_range_3 = gr.Checkbox(label="~7", value=False)
param_range_4 = gr.Checkbox(label="~13", value=False)
param_range_5 = gr.Checkbox(label="~20", value=False)
param_range_6 = gr.Checkbox(label="~34", value=False)
param_range_7 = gr.Checkbox(label="~50", value=False)
param_range_8 = gr.Checkbox(label="~70+", value=False)
# Load the initial leaderboard data
leaderboard_df = load_leaderboard_data("ugi-leaderboard-data.csv")
# Define the datatypes for each column, setting 'Model' column to 'html'
datatypes = ['html' if col == 'Model' else 'str' for col in UGI_COLS]
leaderboard_table = gr.Dataframe(
value=leaderboard_df[UGI_COLS],
datatype=datatypes, # Specify the datatype for each column
interactive=False, # Set to False to make the leaderboard non-editable
visible=True,
elem_classes="text-sm" # Increase the font size of the leaderboard data
)
# Define the search and filter functionality
inputs = [
search_bar,
param_range_1,
param_range_2,
param_range_3,
param_range_4,
param_range_5,
param_range_6,
param_range_7,
param_range_8
]
outputs = leaderboard_table
search_bar.change(
fn=lambda query, r1, r2, r3, r4, r5, r6, r7, r8: update_table(leaderboard_df, query, {
'~1.5': r1,
'~3': r2,
'~7': r3,
'~13': r4,
'~20': r5,
'~34': r6,
'~50': r7,
'~70+': r8
}),
inputs=inputs,
outputs=outputs
)
for param_range in inputs[1:]:
param_range.change(
fn=lambda query, r1, r2, r3, r4, r5, r6, r7, r8: update_table(leaderboard_df, query, {
'~1.5': r1,
'~3': r2,
'~7': r3,
'~13': r4,
'~20': r5,
'~34': r6,
'~50': r7,
'~70+': r8
}),
inputs=inputs,
outputs=outputs
)
# Launch the Gradio app
demo.launch()