File size: 5,654 Bytes
38d6ba2 b2f72d4 38d6ba2 44bdb77 56376a8 44bdb77 58d6da7 56376a8 38d6ba2 11f5f93 38d6ba2 11f5f93 915b360 27f577f b2f72d4 915b360 b2f72d4 915b360 27f577f 38d6ba2 481e529 fb27588 11f5f93 fb27588 38d6ba2 fb27588 38d6ba2 fb27588 38d6ba2 fb27588 38d6ba2 11f5f93 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
import gradio as gr
import pandas as pd
# Define the columns for the UGI Leaderboard
UGI_COLS = [
'#P', 'Model', 'UGI π', 'W/10 π', 'Unruly', 'Internet', 'CrimeStats', 'Stories/Jokes', 'PolContro'
]
# Load the leaderboard data from a CSV file
def load_leaderboard_data(csv_file_path):
try:
df = pd.read_csv(csv_file_path)
# Create hyperlinks in the Model column using HTML <a> tags with inline CSS for styling
df['Model'] = df.apply(lambda row: f'<a href="{row["Link"]}" target="_blank" style="color: blue; text-decoration: none;">{row["Model"]}</a>' if pd.notna(row["Link"]) else row["Model"], axis=1)
# Drop the 'Link' column as it's no longer needed
df.drop(columns=['Link'], inplace=True)
return df
except Exception as e:
print(f"Error loading CSV file: {e}")
return pd.DataFrame(columns=UGI_COLS) # Return an empty dataframe with the correct columns
# Update the leaderboard table based on the search query and parameter range filters
def update_table(df: pd.DataFrame, query: str, param_ranges: dict) -> pd.DataFrame:
filtered_df = df
if any(param_ranges.values()):
conditions = []
for param_range, checked in param_ranges.items():
if checked:
if param_range == '~1.5':
conditions.append((filtered_df['Params'] < 2.5))
elif param_range == '~3':
conditions.append(((filtered_df['Params'] >= 2.5) & (filtered_df['Params'] < 6)))
elif param_range == '~7':
conditions.append(((filtered_df['Params'] >= 6) & (filtered_df['Params'] < 9.5)))
elif param_range == '~13':
conditions.append(((filtered_df['Params'] >= 9.5) & (filtered_df['Params'] < 16)))
elif param_range == '~20':
conditions.append(((filtered_df['Params'] >= 16) & (filtered_df['Params'] < 28)))
elif param_range == '~34':
conditions.append(((filtered_df['Params'] >= 28) & (filtered_df['Params'] < 40)))
elif param_range == '~50':
conditions.append(((filtered_df['Params'] >= 40) & (filtered_df['Params'] < 60)))
elif param_range == '~70+':
conditions.append((filtered_df['Params'] >= 60))
if conditions:
filtered_df = filtered_df[pd.concat(conditions, axis=1).any(axis=1)]
else:
filtered_df = filtered_df[filtered_df['Params'].notna()]
else:
filtered_df = filtered_df[filtered_df['Params'].isna()]
if query:
filtered_df = filtered_df[filtered_df.apply(lambda row: query.lower() in row.to_string().lower(), axis=1)]
return filtered_df[UGI_COLS] # Return only the columns defined in UGI_COLS
# Define the Gradio interface
GraInter = gr.Blocks()
with GraInter:
gr.HTML("""<h1 align="center">UGI Leaderboard</h1>""")
gr.Markdown("""
UGI: Uncensored General Intelligence. The average of 5 different subjects that LLMs are commonly steered away from. The leaderboard is made of roughly 60 questions/tasks, measuring both "willingness to answer" and "accuracy" in fact-based controversial questions.
W/10: A more narrow, 10-point score, solely measuring the LLM's Willingness to answer controversial questions.
Unruly: Knowledge of activities that are generally frowned upon.
Internet: Knowledge of various internet information, from professional to deviant.
CrimeStats: Knowledge of crime statistics which are uncomfortable to talk about.
Stories/Jokes: Ability to write offensive stories and jokes.
PolContro: Knowledge of politically/socially controversial information.
""")
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(placeholder=" π Search for a model...", show_label=False, elem_id="search-bar")
with gr.Row():
filter_columns_size = gr.CheckboxGroup(
label="Model sizes (in billions of parameters)",
choices=['~1.5', '~3', '~7', '~13', '~20', '~34', '~50', '~70+'],
value=[], # Set the default value to an empty list
interactive=True,
elem_id="filter-columns-size",
)
# Load the initial leaderboard data
leaderboard_df = load_leaderboard_data("ugi-leaderboard-data.csv")
# Define the datatypes for each column, setting 'Model' column to 'html'
datatypes = ['html' if col == 'Model' else 'str' for col in UGI_COLS]
leaderboard_table = gr.Dataframe(
value=leaderboard_df[UGI_COLS],
datatype=datatypes, # Specify the datatype for each column
interactive=False, # Set to False to make the leaderboard non-editable
visible=True,
elem_classes="text-sm" # Increase the font size of the leaderboard data
)
# Define the search and filter functionality
inputs = [
search_bar,
filter_columns_size
]
outputs = leaderboard_table
search_bar.change(
fn=lambda query, param_ranges: update_table(leaderboard_df, query, dict(zip(['~1.5', '~3', '~7', '~13', '~20', '~34', '~50', '~70+'], param_ranges))),
inputs=inputs,
outputs=outputs
)
filter_columns_size.change(
fn=lambda query, param_ranges: update_table(leaderboard_df, query, dict(zip(['~1.5', '~3', '~7', '~13', '~20', '~34', '~50', '~70+'], param_ranges))),
inputs=inputs,
outputs=outputs
)
# Launch the Gradio app
GraInter.launch() |