File size: 5,654 Bytes
38d6ba2
 
 
 
 
b2f72d4
38d6ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44bdb77
56376a8
44bdb77
 
58d6da7
56376a8
38d6ba2
 
 
 
 
 
 
11f5f93
38d6ba2
11f5f93
915b360
27f577f
b2f72d4
915b360
b2f72d4
915b360
 
 
 
 
 
 
 
 
27f577f
 
38d6ba2
 
481e529
fb27588
 
 
 
11f5f93
fb27588
 
 
38d6ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb27588
38d6ba2
 
 
 
 
fb27588
38d6ba2
 
 
 
fb27588
 
 
 
 
38d6ba2
 
11f5f93
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import gradio as gr
import pandas as pd

# Define the columns for the UGI Leaderboard
UGI_COLS = [
    '#P', 'Model', 'UGI πŸ†', 'W/10 πŸ‘', 'Unruly', 'Internet', 'CrimeStats', 'Stories/Jokes', 'PolContro'
]

# Load the leaderboard data from a CSV file
def load_leaderboard_data(csv_file_path):
    try:
        df = pd.read_csv(csv_file_path)
        # Create hyperlinks in the Model column using HTML <a> tags with inline CSS for styling
        df['Model'] = df.apply(lambda row: f'<a href="{row["Link"]}" target="_blank" style="color: blue; text-decoration: none;">{row["Model"]}</a>' if pd.notna(row["Link"]) else row["Model"], axis=1)
        # Drop the 'Link' column as it's no longer needed
        df.drop(columns=['Link'], inplace=True)
        return df
    except Exception as e:
        print(f"Error loading CSV file: {e}")
        return pd.DataFrame(columns=UGI_COLS)  # Return an empty dataframe with the correct columns

# Update the leaderboard table based on the search query and parameter range filters
def update_table(df: pd.DataFrame, query: str, param_ranges: dict) -> pd.DataFrame:
    filtered_df = df
    if any(param_ranges.values()):
        conditions = []
        for param_range, checked in param_ranges.items():
            if checked:
                if param_range == '~1.5':
                    conditions.append((filtered_df['Params'] < 2.5))
                elif param_range == '~3':
                    conditions.append(((filtered_df['Params'] >= 2.5) & (filtered_df['Params'] < 6)))
                elif param_range == '~7':
                    conditions.append(((filtered_df['Params'] >= 6) & (filtered_df['Params'] < 9.5)))
                elif param_range == '~13':
                    conditions.append(((filtered_df['Params'] >= 9.5) & (filtered_df['Params'] < 16)))
                elif param_range == '~20':
                    conditions.append(((filtered_df['Params'] >= 16) & (filtered_df['Params'] < 28)))
                elif param_range == '~34':
                    conditions.append(((filtered_df['Params'] >= 28) & (filtered_df['Params'] < 40)))
                elif param_range == '~50':
                    conditions.append(((filtered_df['Params'] >= 40) & (filtered_df['Params'] < 60)))
                elif param_range == '~70+':
                    conditions.append((filtered_df['Params'] >= 60))
        
        if conditions:
            filtered_df = filtered_df[pd.concat(conditions, axis=1).any(axis=1)]
        else:
            filtered_df = filtered_df[filtered_df['Params'].notna()]
    else:
        filtered_df = filtered_df[filtered_df['Params'].isna()]
    
    if query:
        filtered_df = filtered_df[filtered_df.apply(lambda row: query.lower() in row.to_string().lower(), axis=1)]
    
    return filtered_df[UGI_COLS]  # Return only the columns defined in UGI_COLS

# Define the Gradio interface
GraInter = gr.Blocks()

with GraInter:
    gr.HTML("""<h1 align="center">UGI Leaderboard</h1>""")
    gr.Markdown("""
    UGI: Uncensored General Intelligence. The average of 5 different subjects that LLMs are commonly steered away from. The leaderboard is made of roughly 60 questions/tasks, measuring both "willingness to answer" and "accuracy" in fact-based controversial questions.
    
    W/10: A more narrow, 10-point score, solely measuring the LLM's Willingness to answer controversial questions.
    
    Unruly: Knowledge of activities that are generally frowned upon.
    
    Internet: Knowledge of various internet information, from professional to deviant.
    
    CrimeStats: Knowledge of crime statistics which are uncomfortable to talk about.
   
    Stories/Jokes: Ability to write offensive stories and jokes.
    
    PolContro: Knowledge of politically/socially controversial information.
    """)
    with gr.Column():
        with gr.Row():
            search_bar = gr.Textbox(placeholder=" πŸ” Search for a model...", show_label=False, elem_id="search-bar")
        with gr.Row():
            filter_columns_size = gr.CheckboxGroup(
                label="Model sizes (in billions of parameters)",
                choices=['~1.5', '~3', '~7', '~13', '~20', '~34', '~50', '~70+'],
                value=[],  # Set the default value to an empty list
                interactive=True,
                elem_id="filter-columns-size",
            )
    
    # Load the initial leaderboard data
    leaderboard_df = load_leaderboard_data("ugi-leaderboard-data.csv")
    
    # Define the datatypes for each column, setting 'Model' column to 'html'
    datatypes = ['html' if col == 'Model' else 'str' for col in UGI_COLS]
    
    leaderboard_table = gr.Dataframe(
        value=leaderboard_df[UGI_COLS],
        datatype=datatypes,  # Specify the datatype for each column
        interactive=False,  # Set to False to make the leaderboard non-editable
        visible=True,
        elem_classes="text-sm"  # Increase the font size of the leaderboard data
    )

    # Define the search and filter functionality
    inputs = [
        search_bar,
        filter_columns_size
    ]
    
    outputs = leaderboard_table
    
    search_bar.change(
        fn=lambda query, param_ranges: update_table(leaderboard_df, query, dict(zip(['~1.5', '~3', '~7', '~13', '~20', '~34', '~50', '~70+'], param_ranges))),
        inputs=inputs,
        outputs=outputs
    )
    
    filter_columns_size.change(
        fn=lambda query, param_ranges: update_table(leaderboard_df, query, dict(zip(['~1.5', '~3', '~7', '~13', '~20', '~34', '~50', '~70+'], param_ranges))),
        inputs=inputs,
        outputs=outputs
    )

# Launch the Gradio app
GraInter.launch()