Do0rMaMu's picture
Upload folder using huggingface_hub
e45d058 verified
# Copyright (c) 2022, Tri Dao.
# Adapted from https://github.com/NVIDIA/apex/blob/master/apex/contrib/layer_norm/layer_norm.py
import torch
from torch.nn import init
from flash_attn.ops.layer_norm import (
DropoutAddLayerNormFn,
DropoutAddLayerNormParallelResidualFn,
DropoutAddLayerNormSubsetFn,
)
def rms_norm(x, weight, epsilon):
return DropoutAddLayerNormFn.apply(
x, None, weight, None, None, None, 0.0, epsilon, False, False, True
)
def dropout_add_rms_norm(
x0,
residual,
weight,
bias,
dropout_p,
epsilon,
rowscale=None,
layerscale=None,
prenorm=False,
residual_in_fp32=False,
return_dropout_mask=False,
):
"""residual_in_fp32 only has an effect if residual is None.
Otherwise residual dtype is residual.dtype.
"""
return DropoutAddLayerNormFn.apply(
x0,
residual,
weight,
bias,
rowscale,
layerscale,
dropout_p,
epsilon,
residual_in_fp32,
prenorm,
True,
return_dropout_mask,
)
def dropout_add_rms_norm_subset(
x0,
residual,
weight,
bias,
dropout_p,
epsilon,
layerscale=None,
x0_subset=None,
out_subset=None,
rowscale_const=1.0,
out_numrows=0,
prenorm=False,
residual_in_fp32=False,
return_dropout_mask=False,
):
"""residual_in_fp32 only has an effect if residual is None.
Otherwise residual dtype is residual.dtype.
"""
return DropoutAddLayerNormSubsetFn.apply(
x0,
residual,
weight,
bias,
layerscale,
x0_subset,
out_subset,
dropout_p,
epsilon,
rowscale_const,
out_numrows,
residual_in_fp32,
prenorm,
True,
return_dropout_mask,
)
def dropout_add_rms_norm_parallel_residual(
x0,
x1,
residual,
weight0,
bias0,
weight1,
bias1,
dropout_p,
epsilon,
prenorm=False,
residual_in_fp32=False,
return_dropout_mask=False,
):
"""residual_in_fp32 only has an effect if residual is None.
Otherwise residual dtype is residual.dtype.
"""
return DropoutAddLayerNormParallelResidualFn.apply(
x0,
x1,
residual,
weight0,
bias0,
weight1,
bias1,
dropout_p,
epsilon,
residual_in_fp32,
prenorm,
True,
return_dropout_mask,
)
class RMSNorm(torch.nn.Module):
def __init__(self, hidden_size, eps=1e-5, device=None, dtype=None):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.eps = eps
self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
self.register_parameter("bias", None)
self.reset_parameters()
def reset_parameters(self):
init.ones_(self.weight)
def forward(self, x):
return rms_norm(x, self.weight, self.eps)
class DropoutAddRMSNorm(torch.nn.Module):
def __init__(
self,
hidden_size,
prenorm=False,
p=0.0,
eps=1e-5,
residual_in_fp32=False,
device=None,
dtype=None,
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.prenorm = prenorm
self.p = p
self.eps = eps
self.residual_in_fp32 = residual_in_fp32
self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
self.register_parameter("bias", None)
self.reset_parameters()
def reset_parameters(self):
init.ones_(self.weight)
def forward(self, x0, residual=None):
return dropout_add_rms_norm(
x0,
residual,
self.weight,
None,
self.p if self.training else 0.0,
self.eps,
prenorm=self.prenorm,
residual_in_fp32=self.residual_in_fp32,
)