Spaces:
Sleeping
Sleeping
# Copyright (c) 2022, Tri Dao. | |
# Inspired by / adapted from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py | |
import math | |
import re | |
from collections import OrderedDict | |
from copy import deepcopy | |
from functools import partial | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
from timm.models.helpers import named_apply | |
from torch.nn.init import trunc_normal_ | |
from torchvision.ops import StochasticDepth | |
from flash_attn.layers.patch_embed import PatchEmbed | |
from flash_attn.modules.block import Block | |
from flash_attn.modules.mha import MHA | |
from flash_attn.modules.mlp import FusedMLP, Mlp | |
try: | |
from flash_attn.ops.triton.layer_norm import layer_norm_fn | |
except ImportError: | |
layer_norm_fn = None | |
def create_mixer_cls( | |
num_heads, qkv_bias, attn_drop, use_flash_attn, fused_bias_fc, cross_attn=False | |
): | |
mixer_cls = partial( | |
MHA, | |
num_heads=num_heads, | |
cross_attn=cross_attn, | |
qkv_proj_bias=qkv_bias, | |
dropout=attn_drop, | |
fused_bias_fc=fused_bias_fc, | |
use_flash_attn=use_flash_attn, | |
) | |
return mixer_cls | |
def create_mlp_cls(embed_dim, mlp_ratio, act_layer, fused_mlp): | |
inner_dim = int(embed_dim * mlp_ratio) | |
if not fused_mlp: | |
mlp_cls = partial(Mlp, hidden_features=inner_dim, activation=act_layer()) | |
else: | |
mlp_cls = partial(FusedMLP, hidden_features=inner_dim) | |
return mlp_cls | |
def create_block( | |
embed_dim, | |
num_heads, | |
mlp_ratio, | |
qkv_bias, | |
drop_rate, | |
attn_drop_rate, | |
drop_path1, | |
drop_path2, | |
norm_layer, | |
act_layer, | |
use_flash_attn, | |
fused_bias_fc, | |
fused_mlp, | |
fused_dropout_add_ln, | |
layer_idx=None, | |
n_layer=None, | |
last_layer_subset=False, | |
): | |
mixer_cls = create_mixer_cls( | |
num_heads, | |
qkv_bias, | |
attn_drop_rate, | |
use_flash_attn, | |
fused_bias_fc, | |
cross_attn=(last_layer_subset and layer_idx == n_layer - 1), | |
) | |
mlp_cls = create_mlp_cls(embed_dim, mlp_ratio, act_layer, fused_mlp) | |
# TD [2022-10-15]: Force residual in fp32 in case of DeepSpeed | |
block = Block( | |
embed_dim, | |
mixer_cls, | |
mlp_cls, | |
norm_cls=norm_layer, | |
prenorm=True, | |
resid_dropout1=drop_rate, | |
resid_dropout2=drop_rate, | |
drop_path1=drop_path1, | |
drop_path2=drop_path2, | |
fused_dropout_add_ln=fused_dropout_add_ln, | |
residual_in_fp32=True, | |
) | |
return block | |
class VisionTransformer(nn.Module): | |
"""Vision Transformer | |
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` | |
- https://arxiv.org/abs/2010.11929 | |
""" | |
def __init__( | |
self, | |
img_size=224, | |
patch_size=16, | |
in_chans=3, | |
num_classes=1000, | |
global_pool="token", | |
embed_dim=768, | |
depth=12, | |
num_heads=12, | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
init_values=None, | |
class_token=True, | |
no_embed_class=False, | |
pre_norm=False, | |
fc_norm=None, | |
drop_rate=0.0, | |
attn_drop_rate=0.0, | |
drop_path_rate=0.0, | |
weight_init="", | |
embed_layer=PatchEmbed, | |
norm_layer=None, | |
act_layer=None, | |
use_flash_attn=False, | |
fused_bias_fc=False, | |
fused_mlp=False, | |
fused_dropout_add_ln=False, | |
): | |
""" | |
Args: | |
img_size (int, tuple): input image size | |
patch_size (int, tuple): patch size | |
in_chans (int): number of input channels | |
num_classes (int): number of classes for classification head | |
global_pool (str): type of global pooling for final sequence (default: 'token') | |
embed_dim (int): embedding dimension | |
depth (int): depth of transformer | |
num_heads (int): number of attention heads | |
mlp_ratio (int): ratio of mlp hidden dim to embedding dim | |
qkv_bias (bool): enable bias for qkv if True | |
init_values: (float): layer-scale init values | |
class_token (bool): use class token | |
fc_norm (Optional[bool]): pre-fc norm after pool, set if global_pool == 'avg' if None (default: None) | |
drop_rate (float): dropout rate | |
attn_drop_rate (float): attention dropout rate | |
drop_path_rate (float): stochastic depth rate | |
weight_init (str): weight init scheme | |
embed_layer (nn.Module): patch embedding layer | |
norm_layer: (nn.Module): normalization layer | |
act_layer: (nn.Module): MLP activation layer | |
""" | |
super().__init__() | |
assert global_pool == "token", "Only support pooling with CLS token" | |
assert class_token | |
assert init_values is None, "LayerScale is not supported yet" | |
assert weight_init == "" | |
assert fc_norm is None | |
# pre_norm seems redundant, as there's a LayerNorm right at the start of each block, idk | |
assert not pre_norm | |
use_fc_norm = global_pool == "avg" if fc_norm is None else fc_norm | |
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) | |
act_layer = act_layer or nn.GELU | |
self.num_classes = num_classes | |
self.global_pool = global_pool | |
self.num_features = ( | |
self.embed_dim | |
) = embed_dim # num_features for consistency with other models | |
self.num_prefix_tokens = 1 if class_token else 0 | |
self.no_embed_class = no_embed_class | |
patch_embed_extra_kwargs = ( | |
{"fused_bias_fc": fused_bias_fc} if embed_layer is PatchEmbed else {} | |
) | |
self.patch_embed = embed_layer( | |
img_size=img_size, | |
patch_size=patch_size, | |
in_chans=in_chans, | |
embed_dim=embed_dim, | |
bias=not pre_norm, # disable bias if pre-norm is used (e.g. CLIP) | |
**patch_embed_extra_kwargs, | |
) | |
num_patches = self.patch_embed.num_patches | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None | |
embed_len = num_patches if no_embed_class else num_patches + self.num_prefix_tokens | |
self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * 0.02) | |
dpr = [ | |
x.item() for x in torch.linspace(0, drop_path_rate, depth) | |
] # stochastic depth decay rule | |
# We change the order of dropout, residual and layer norm: | |
# Instead of LN -> Attn / MLP -> Dropout -> Add, we do: | |
# Dropout -> Add -> LN -> Attn / MLP, returning both the residual branch (output of Add) and | |
# the main branch (output of MLP). The model definition is unchanged, but the mapping of the | |
# nn.Dropout probabilities are changed. | |
# This is for performance reason: we can fuse dropout + add + layer_norm. | |
self.blocks = nn.ModuleList( | |
[ | |
create_block( | |
embed_dim, | |
num_heads, | |
mlp_ratio, | |
qkv_bias, | |
drop_rate, | |
attn_drop_rate, | |
drop_path1=dpr[i - 1] if i > 0 else 0.0, | |
drop_path2=dpr[i], | |
norm_layer=norm_layer, | |
act_layer=act_layer, | |
use_flash_attn=use_flash_attn, | |
fused_bias_fc=fused_bias_fc, | |
fused_mlp=fused_mlp, | |
fused_dropout_add_ln=fused_dropout_add_ln, | |
layer_idx=i, | |
n_layer=depth, | |
last_layer_subset=(global_pool == "token"), | |
) | |
for i in range(depth) | |
] | |
) | |
self.dropout = nn.Dropout(p=drop_rate) | |
self.drop_path = StochasticDepth(p=dpr[-1], mode="row") | |
self.norm = norm_layer(embed_dim) | |
self.fused_dropout_add_ln = fused_dropout_add_ln | |
if self.fused_dropout_add_ln and layer_norm_fn is None: | |
raise ImportError("Triton is not installed") | |
# Classifier Head | |
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
self.init_weights(weight_init) | |
def init_weights(self, mode=""): | |
assert mode == "" | |
trunc_normal_(self.pos_embed, std=0.02) | |
if self.cls_token is not None: | |
nn.init.normal_(self.cls_token, std=1e-6) | |
named_apply(init_weights_vit_timm, self) | |
def _init_weights(self, m): | |
# this fn left here for compat with downstream users | |
init_weights_vit_timm(m) | |
def no_weight_decay(self): | |
return {"pos_embed", "cls_token"} | |
def _pos_embed(self, x): | |
if self.no_embed_class: | |
# deit-3, updated JAX (big vision) | |
# position embedding does not overlap with class token, add then concat | |
x = x + self.pos_embed | |
if self.cls_token is not None: | |
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) | |
else: | |
# original timm, JAX, and deit vit impl | |
# pos_embed has entry for class token, concat then add | |
if self.cls_token is not None: | |
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) | |
x = x + self.pos_embed | |
return x | |
def forward_features(self, x, all_tokens=True): | |
""" | |
If all_tokens==False and self.global_pool == 'token', we only return the features for the | |
cls token. | |
""" | |
x = self.patch_embed(x) | |
hidden_states = self._pos_embed(x) | |
residual = None | |
if self.global_pool != "token" or all_tokens: | |
# if True: | |
for block in self.blocks: | |
hidden_states, residual = block(hidden_states, residual) | |
else: | |
for block in self.blocks[:-1]: | |
hidden_states, residual = block(hidden_states, residual) | |
# For the last layer, we only want the 1st token of the output. So we do cross-attention | |
# where the query is the 1st token and the key/value is the whole sequence. | |
hidden_states, residual = self.blocks[-1]( | |
hidden_states, residual, mixer_subset=slice(0, 1) | |
) | |
if not self.fused_dropout_add_ln: | |
residual = self.drop_path(self.dropout(hidden_states)) + residual | |
hidden_states = self.norm(residual.to(dtype=self.norm.weight.dtype)) | |
else: | |
if self.drop_path.p == 0 or not self.training: | |
rowscale = None | |
else: | |
rowscale = self.drop_path( | |
torch.ones( | |
hidden_states.shape[:-1], | |
device=hidden_states.device, | |
dtype=hidden_states.dtype, | |
) | |
) | |
# Set prenorm=False here since we don't need to the residual | |
hidden_states = layer_norm_fn( | |
hidden_states, | |
self.norm.weight, | |
self.norm.bias, | |
residual=residual, | |
eps=self.norm.eps, | |
dropout_p=self.dropout.p if self.training else 0.0, | |
rowscale=rowscale, | |
prenorm=False, | |
) | |
return hidden_states | |
def forward_head(self, x, pre_logits: bool = False): | |
if self.global_pool: | |
x = x[:, self.num_prefix_tokens :].mean(dim=1) if self.global_pool == "avg" else x[:, 0] | |
return x if pre_logits else self.head(x) | |
def forward(self, x): | |
x = self.forward_features(x, all_tokens=False) | |
x = self.forward_head(x) | |
return x | |
def load_state_dict(self, state_dict, strict=True): | |
patch_embed_weight = state_dict["patch_embed.proj.weight"] | |
if patch_embed_weight.dim() == 4: | |
# convert from Conv2d to Linear | |
state_dict["patch_embed.proj.weight"] = rearrange( | |
patch_embed_weight, "o c h w -> o (c h w)" | |
) | |
def key_mapping_attn(key): | |
key = re.sub(r"^blocks.(\d+).attn.qkv.", r"blocks.\1.mixer.Wqkv.", key) | |
key = re.sub(r"^blocks.(\d+).attn.proj.", r"blocks.\1.mixer.out_proj.", key) | |
return key | |
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items()) | |
n_layer = len(self.blocks) | |
# Convert from Wqkv to Wq and Wkv for cross attention (last layer) | |
if ( | |
self.blocks[-1].mixer.cross_attn | |
and f"blocks.{n_layer - 1}.mixer.Wqkv.weight" in state_dict | |
): | |
Wqkv = state_dict.pop(f"blocks.{n_layer - 1}.mixer.Wqkv.weight") | |
bqkv = state_dict.pop(f"blocks.{n_layer - 1}.mixer.Wqkv.bias") | |
state_dict[f"blocks.{n_layer - 1}.mixer.Wq.weight"] = Wqkv[: self.embed_dim] | |
state_dict[f"blocks.{n_layer - 1}.mixer.Wkv.weight"] = Wqkv[self.embed_dim :] | |
state_dict[f"blocks.{n_layer - 1}.mixer.Wq.bias"] = bqkv[: self.embed_dim] | |
state_dict[f"blocks.{n_layer - 1}.mixer.Wkv.bias"] = bqkv[self.embed_dim :] | |
return super().load_state_dict(state_dict, strict=strict) | |
def init_weights_vit_timm(module: nn.Module, name: str = ""): | |
"""ViT weight initialization, original timm impl (for reproducibility)""" | |
if isinstance(module, nn.Linear): | |
trunc_normal_(module.weight, std=0.02) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
elif hasattr(module, "init_weights"): | |
module.init_weights() | |
def vit_base_patch16_224(pretrained=False, **kwargs): | |
"""ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929). | |
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer. | |
""" | |
assert not pretrained | |
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) | |
model = VisionTransformer(**model_kwargs) | |
return model | |