Do0rMaMu's picture
Upload folder using huggingface_hub
e45d058 verified
# Copyright (c) 2022, Tri Dao.
# Inspired by / adapted from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
import math
import re
from collections import OrderedDict
from copy import deepcopy
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from timm.models.helpers import named_apply
from torch.nn.init import trunc_normal_
from torchvision.ops import StochasticDepth
from flash_attn.layers.patch_embed import PatchEmbed
from flash_attn.modules.block import Block
from flash_attn.modules.mha import MHA
from flash_attn.modules.mlp import FusedMLP, Mlp
try:
from flash_attn.ops.triton.layer_norm import layer_norm_fn
except ImportError:
layer_norm_fn = None
def create_mixer_cls(
num_heads, qkv_bias, attn_drop, use_flash_attn, fused_bias_fc, cross_attn=False
):
mixer_cls = partial(
MHA,
num_heads=num_heads,
cross_attn=cross_attn,
qkv_proj_bias=qkv_bias,
dropout=attn_drop,
fused_bias_fc=fused_bias_fc,
use_flash_attn=use_flash_attn,
)
return mixer_cls
def create_mlp_cls(embed_dim, mlp_ratio, act_layer, fused_mlp):
inner_dim = int(embed_dim * mlp_ratio)
if not fused_mlp:
mlp_cls = partial(Mlp, hidden_features=inner_dim, activation=act_layer())
else:
mlp_cls = partial(FusedMLP, hidden_features=inner_dim)
return mlp_cls
def create_block(
embed_dim,
num_heads,
mlp_ratio,
qkv_bias,
drop_rate,
attn_drop_rate,
drop_path1,
drop_path2,
norm_layer,
act_layer,
use_flash_attn,
fused_bias_fc,
fused_mlp,
fused_dropout_add_ln,
layer_idx=None,
n_layer=None,
last_layer_subset=False,
):
mixer_cls = create_mixer_cls(
num_heads,
qkv_bias,
attn_drop_rate,
use_flash_attn,
fused_bias_fc,
cross_attn=(last_layer_subset and layer_idx == n_layer - 1),
)
mlp_cls = create_mlp_cls(embed_dim, mlp_ratio, act_layer, fused_mlp)
# TD [2022-10-15]: Force residual in fp32 in case of DeepSpeed
block = Block(
embed_dim,
mixer_cls,
mlp_cls,
norm_cls=norm_layer,
prenorm=True,
resid_dropout1=drop_rate,
resid_dropout2=drop_rate,
drop_path1=drop_path1,
drop_path2=drop_path2,
fused_dropout_add_ln=fused_dropout_add_ln,
residual_in_fp32=True,
)
return block
class VisionTransformer(nn.Module):
"""Vision Transformer
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale`
- https://arxiv.org/abs/2010.11929
"""
def __init__(
self,
img_size=224,
patch_size=16,
in_chans=3,
num_classes=1000,
global_pool="token",
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.0,
qkv_bias=True,
init_values=None,
class_token=True,
no_embed_class=False,
pre_norm=False,
fc_norm=None,
drop_rate=0.0,
attn_drop_rate=0.0,
drop_path_rate=0.0,
weight_init="",
embed_layer=PatchEmbed,
norm_layer=None,
act_layer=None,
use_flash_attn=False,
fused_bias_fc=False,
fused_mlp=False,
fused_dropout_add_ln=False,
):
"""
Args:
img_size (int, tuple): input image size
patch_size (int, tuple): patch size
in_chans (int): number of input channels
num_classes (int): number of classes for classification head
global_pool (str): type of global pooling for final sequence (default: 'token')
embed_dim (int): embedding dimension
depth (int): depth of transformer
num_heads (int): number of attention heads
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
qkv_bias (bool): enable bias for qkv if True
init_values: (float): layer-scale init values
class_token (bool): use class token
fc_norm (Optional[bool]): pre-fc norm after pool, set if global_pool == 'avg' if None (default: None)
drop_rate (float): dropout rate
attn_drop_rate (float): attention dropout rate
drop_path_rate (float): stochastic depth rate
weight_init (str): weight init scheme
embed_layer (nn.Module): patch embedding layer
norm_layer: (nn.Module): normalization layer
act_layer: (nn.Module): MLP activation layer
"""
super().__init__()
assert global_pool == "token", "Only support pooling with CLS token"
assert class_token
assert init_values is None, "LayerScale is not supported yet"
assert weight_init == ""
assert fc_norm is None
# pre_norm seems redundant, as there's a LayerNorm right at the start of each block, idk
assert not pre_norm
use_fc_norm = global_pool == "avg" if fc_norm is None else fc_norm
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
act_layer = act_layer or nn.GELU
self.num_classes = num_classes
self.global_pool = global_pool
self.num_features = (
self.embed_dim
) = embed_dim # num_features for consistency with other models
self.num_prefix_tokens = 1 if class_token else 0
self.no_embed_class = no_embed_class
patch_embed_extra_kwargs = (
{"fused_bias_fc": fused_bias_fc} if embed_layer is PatchEmbed else {}
)
self.patch_embed = embed_layer(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
bias=not pre_norm, # disable bias if pre-norm is used (e.g. CLIP)
**patch_embed_extra_kwargs,
)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if class_token else None
embed_len = num_patches if no_embed_class else num_patches + self.num_prefix_tokens
self.pos_embed = nn.Parameter(torch.randn(1, embed_len, embed_dim) * 0.02)
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, depth)
] # stochastic depth decay rule
# We change the order of dropout, residual and layer norm:
# Instead of LN -> Attn / MLP -> Dropout -> Add, we do:
# Dropout -> Add -> LN -> Attn / MLP, returning both the residual branch (output of Add) and
# the main branch (output of MLP). The model definition is unchanged, but the mapping of the
# nn.Dropout probabilities are changed.
# This is for performance reason: we can fuse dropout + add + layer_norm.
self.blocks = nn.ModuleList(
[
create_block(
embed_dim,
num_heads,
mlp_ratio,
qkv_bias,
drop_rate,
attn_drop_rate,
drop_path1=dpr[i - 1] if i > 0 else 0.0,
drop_path2=dpr[i],
norm_layer=norm_layer,
act_layer=act_layer,
use_flash_attn=use_flash_attn,
fused_bias_fc=fused_bias_fc,
fused_mlp=fused_mlp,
fused_dropout_add_ln=fused_dropout_add_ln,
layer_idx=i,
n_layer=depth,
last_layer_subset=(global_pool == "token"),
)
for i in range(depth)
]
)
self.dropout = nn.Dropout(p=drop_rate)
self.drop_path = StochasticDepth(p=dpr[-1], mode="row")
self.norm = norm_layer(embed_dim)
self.fused_dropout_add_ln = fused_dropout_add_ln
if self.fused_dropout_add_ln and layer_norm_fn is None:
raise ImportError("Triton is not installed")
# Classifier Head
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
self.init_weights(weight_init)
def init_weights(self, mode=""):
assert mode == ""
trunc_normal_(self.pos_embed, std=0.02)
if self.cls_token is not None:
nn.init.normal_(self.cls_token, std=1e-6)
named_apply(init_weights_vit_timm, self)
def _init_weights(self, m):
# this fn left here for compat with downstream users
init_weights_vit_timm(m)
@torch.jit.ignore
def no_weight_decay(self):
return {"pos_embed", "cls_token"}
def _pos_embed(self, x):
if self.no_embed_class:
# deit-3, updated JAX (big vision)
# position embedding does not overlap with class token, add then concat
x = x + self.pos_embed
if self.cls_token is not None:
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
else:
# original timm, JAX, and deit vit impl
# pos_embed has entry for class token, concat then add
if self.cls_token is not None:
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
x = x + self.pos_embed
return x
def forward_features(self, x, all_tokens=True):
"""
If all_tokens==False and self.global_pool == 'token', we only return the features for the
cls token.
"""
x = self.patch_embed(x)
hidden_states = self._pos_embed(x)
residual = None
if self.global_pool != "token" or all_tokens:
# if True:
for block in self.blocks:
hidden_states, residual = block(hidden_states, residual)
else:
for block in self.blocks[:-1]:
hidden_states, residual = block(hidden_states, residual)
# For the last layer, we only want the 1st token of the output. So we do cross-attention
# where the query is the 1st token and the key/value is the whole sequence.
hidden_states, residual = self.blocks[-1](
hidden_states, residual, mixer_subset=slice(0, 1)
)
if not self.fused_dropout_add_ln:
residual = self.drop_path(self.dropout(hidden_states)) + residual
hidden_states = self.norm(residual.to(dtype=self.norm.weight.dtype))
else:
if self.drop_path.p == 0 or not self.training:
rowscale = None
else:
rowscale = self.drop_path(
torch.ones(
hidden_states.shape[:-1],
device=hidden_states.device,
dtype=hidden_states.dtype,
)
)
# Set prenorm=False here since we don't need to the residual
hidden_states = layer_norm_fn(
hidden_states,
self.norm.weight,
self.norm.bias,
residual=residual,
eps=self.norm.eps,
dropout_p=self.dropout.p if self.training else 0.0,
rowscale=rowscale,
prenorm=False,
)
return hidden_states
def forward_head(self, x, pre_logits: bool = False):
if self.global_pool:
x = x[:, self.num_prefix_tokens :].mean(dim=1) if self.global_pool == "avg" else x[:, 0]
return x if pre_logits else self.head(x)
def forward(self, x):
x = self.forward_features(x, all_tokens=False)
x = self.forward_head(x)
return x
def load_state_dict(self, state_dict, strict=True):
patch_embed_weight = state_dict["patch_embed.proj.weight"]
if patch_embed_weight.dim() == 4:
# convert from Conv2d to Linear
state_dict["patch_embed.proj.weight"] = rearrange(
patch_embed_weight, "o c h w -> o (c h w)"
)
def key_mapping_attn(key):
key = re.sub(r"^blocks.(\d+).attn.qkv.", r"blocks.\1.mixer.Wqkv.", key)
key = re.sub(r"^blocks.(\d+).attn.proj.", r"blocks.\1.mixer.out_proj.", key)
return key
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
n_layer = len(self.blocks)
# Convert from Wqkv to Wq and Wkv for cross attention (last layer)
if (
self.blocks[-1].mixer.cross_attn
and f"blocks.{n_layer - 1}.mixer.Wqkv.weight" in state_dict
):
Wqkv = state_dict.pop(f"blocks.{n_layer - 1}.mixer.Wqkv.weight")
bqkv = state_dict.pop(f"blocks.{n_layer - 1}.mixer.Wqkv.bias")
state_dict[f"blocks.{n_layer - 1}.mixer.Wq.weight"] = Wqkv[: self.embed_dim]
state_dict[f"blocks.{n_layer - 1}.mixer.Wkv.weight"] = Wqkv[self.embed_dim :]
state_dict[f"blocks.{n_layer - 1}.mixer.Wq.bias"] = bqkv[: self.embed_dim]
state_dict[f"blocks.{n_layer - 1}.mixer.Wkv.bias"] = bqkv[self.embed_dim :]
return super().load_state_dict(state_dict, strict=strict)
def init_weights_vit_timm(module: nn.Module, name: str = ""):
"""ViT weight initialization, original timm impl (for reproducibility)"""
if isinstance(module, nn.Linear):
trunc_normal_(module.weight, std=0.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif hasattr(module, "init_weights"):
module.init_weights()
def vit_base_patch16_224(pretrained=False, **kwargs):
"""ViT-Base (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).
ImageNet-1k weights fine-tuned from in21k @ 224x224, source https://github.com/google-research/vision_transformer.
"""
assert not pretrained
model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs)
model = VisionTransformer(**model_kwargs)
return model