Spaces:
Sleeping
Sleeping
import math | |
import re | |
from collections import OrderedDict | |
import torch | |
import torch.nn.functional as F | |
from transformers import GPT2Config, GPTBigCodeConfig, PretrainedConfig | |
def remap_state_dict_hf_bigcode(state_dict, config: PretrainedConfig): | |
""" | |
Map the state_dict of a Huggingface BigCode model to be flash_attn compatible. | |
""" | |
# Word embedding and position embedding | |
def key_mapping_pos_emb(key): | |
return re.sub(r"^transformer.wpe.", "transformer.embeddings.position_embeddings.", key) | |
state_dict = OrderedDict((key_mapping_pos_emb(k), v) for k, v in state_dict.items()) | |
word_embeddings = state_dict.pop("transformer.wte.weight") | |
# It's possible that vocab_size is padded to be a multiple of 8, for example. | |
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) | |
vocab_size = math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple | |
state_dict["transformer.embeddings.word_embeddings.weight"] = F.pad( | |
word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0]) | |
) | |
state_dict["lm_head.weight"] = state_dict["transformer.embeddings.word_embeddings.weight"] | |
# LayerNorm | |
def key_mapping_ln(key): | |
key = re.sub(r"^transformer.ln_f.(weight|bias)", r"transformer.ln_f.\1", key) | |
key = re.sub( | |
r"^transformer.h.(\d+).ln_(1|2).(weight|bias)", | |
r"transformer.layers.\1.norm\2.\3", | |
key, | |
) | |
return key | |
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items()) | |
def key_mapping_mlp(key): | |
key = re.sub( | |
r"^transformer.h.(\d+).mlp.c_fc.weight", | |
r"transformer.layers.\1.mlp.fc1.weight", | |
key, | |
) | |
key = re.sub( | |
r"^transformer.h.(\d+).mlp.c_proj.weight", | |
r"transformer.layers.\1.mlp.fc2.weight", | |
key, | |
) | |
key = re.sub( | |
r"^transformer.h.(\d+).mlp.c_fc.bias", | |
r"transformer.layers.\1.mlp.fc1.bias", | |
key, | |
) | |
key = re.sub( | |
r"^transformer.h.(\d+).mlp.c_proj.bias", | |
r"transformer.layers.\1.mlp.fc2.bias", | |
key, | |
) | |
return key | |
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items()) | |
# TODO: add support for multi-head attention | |
assert config.multi_query, "Only multi-query attention is supported" | |
# Attention | |
for d in range(config.num_hidden_layers): | |
embed_dim = config.n_embd | |
head_dim = embed_dim // config.n_head | |
c_attn_weight = state_dict.pop(f"transformer.h.{d}.attn.c_attn.weight") | |
# with multi-query attention, the weights have shape (embed_dim, embed_dim + head_dim + head_dim) | |
# see https://github.com/huggingface/transformers/blob/95b374952dc27d8511541d6f5a4e22c9ec11fb24/src/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py#L112 | |
# see also https://github.com/ggerganov/ggml/blob/dd1d575956e54c5bdc07632f25506b3b1884dbd2/examples/starcoder/convert-hf-to-ggml.py#L183 | |
# ((n_head + 2) * head_dim, embed_dim) -> (3 * n_heads * head_dim, hidden_dim) | |
q, k, v = torch.split(c_attn_weight, [embed_dim, head_dim, head_dim], dim=0) | |
# duplicate k, v along the first axis (head_dim, hidden_dim) -> (n_heads * head_dim, hidden_dim) | |
k = torch.tile(k, (config.n_head, 1)) | |
v = torch.tile(v, (config.n_head, 1)) | |
state_dict[f"transformer.layers.{d}.mixer.Wqkv.weight"] = torch.cat((q, k, v), dim=0) | |
# same deal with the bias | |
c_attn_bias = state_dict.pop(f"transformer.h.{d}.attn.c_attn.bias") | |
# ((n_head + 2) * head_dim, embed_dim) -> (3 * n_heads * head_dim, hidden_dim) | |
q, k, v = torch.split(c_attn_bias, [embed_dim, head_dim, head_dim], dim=0) | |
# duplicate k, v along the first axis (head_dim, hidden_dim) -> (n_heads * head_dim, hidden_dim) | |
k = torch.tile(k, (config.n_head,)) | |
v = torch.tile(v, (config.n_head,)) | |
state_dict[f"transformer.layers.{d}.mixer.Wqkv.bias"] = torch.cat((q, k, v), dim=0) | |
def key_mapping_attn(key): | |
key = re.sub( | |
r"^transformer.h.(\d+).attn.c_proj.weight", | |
r"transformer.layers.\1.mixer.out_proj.weight", | |
key, | |
) | |
key = re.sub( | |
r"^transformer.h.(\d+).attn.c_proj.bias", | |
r"transformer.layers.\1.mixer.out_proj.bias", | |
key, | |
) | |
return key | |
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items()) | |
return state_dict | |
def inv_remap_state_dict_hf_bigcode(state_dict, config: PretrainedConfig): | |
""" | |
Map the state_dict of a flash_attn model to be Huggingface BigCode compatible. | |
This function is meant to be the inverse of remap_state_dict_hf_bigcode. | |
""" | |
# Word embedding and position embeddings | |
def inv_key_mapping_pos_emb(key): | |
return re.sub(r"^transformer.embeddings.position_embeddings.", "transformer.wpe.", key) | |
state_dict = OrderedDict((inv_key_mapping_pos_emb(k), v) for k, v in state_dict.items()) | |
word_embeddings = state_dict.pop("transformer.embeddings.word_embeddings.weight") | |
word_embeddings = word_embeddings[:, : config.vocab_size] | |
state_dict["transformer.wte.weight"] = word_embeddings | |
state_dict["lm_head.weight"] = word_embeddings | |
# LayerNorm | |
def inv_key_mapping_ln(key): | |
key = re.sub(r"^transformer.ln_f.(weight|bias)", r"transformer.ln_f.\1", key) | |
key = re.sub( | |
r"^transformer.layers.(\d+).norm(1|2).(weight|bias)", | |
r"transformer.h.\1.ln_\2.\3", | |
key, | |
) | |
return key | |
state_dict = OrderedDict((inv_key_mapping_ln(k), v) for k, v in state_dict.items()) | |
# MLPs | |
def inv_key_mapping_mlp(key): | |
key = re.sub( | |
r"^transformer.layers.(\d+).mlp.fc1.weight", | |
r"transformer.h.\1.mlp.c_fc.weight", | |
key, | |
) | |
key = re.sub( | |
r"^transformer.layers.(\d+).mlp.fc2.weight", | |
r"transformer.h.\1.mlp.c_proj.weight", | |
key, | |
) | |
key = re.sub( | |
r"^transformer.layers.(\d+).mlp.fc1.bias", | |
r"transformer.h.\1.mlp.c_fc.bias", | |
key, | |
) | |
key = re.sub( | |
r"^transformer.layers.(\d+).mlp.fc2.bias", | |
r"transformer.h.\1.mlp.c_proj.bias", | |
key, | |
) | |
return key | |
state_dict = OrderedDict((inv_key_mapping_mlp(k), v) for k, v in state_dict.items()) | |
# Attention | |
for d in range(config.num_hidden_layers): | |
embed_dim = config.n_embd | |
head_dim = embed_dim // config.n_head | |
Wqkv_weight = state_dict.pop(f"transformer.layers.{d}.mixer.Wqkv.weight") | |
q, k, v = torch.split( | |
Wqkv_weight, [embed_dim, head_dim * config.n_head, head_dim * config.n_head], dim=0 | |
) | |
c_attn_weight = torch.cat((q, k[:head_dim], v[:head_dim]), dim=0) | |
state_dict[f"transformer.h.{d}.attn.c_attn.weight"] = c_attn_weight | |
# Same deal with the bias | |
Wqkv_bias = state_dict.pop(f"transformer.layers.{d}.mixer.Wqkv.bias") | |
q, k, v = torch.split( | |
Wqkv_bias, [embed_dim, head_dim * config.n_head, head_dim * config.n_head], dim=0 | |
) | |
c_attn_bias = torch.cat((q, k[:head_dim], v[:head_dim]), dim=0) | |
state_dict[f"transformer.h.{d}.attn.c_attn.bias"] = c_attn_bias | |
def inv_key_mapping_attn(key): | |
key = re.sub( | |
r"^transformer.layers.(\d+).mixer.out_proj.weight", | |
r"transformer.h.\1.attn.c_proj.weight", | |
key, | |
) | |
key = re.sub( | |
r"^transformer.layers.(\d+).mixer.out_proj.bias", | |
r"transformer.h.\1.attn.c_proj.bias", | |
key, | |
) | |
return key | |
state_dict = OrderedDict((inv_key_mapping_attn(k), v) for k, v in state_dict.items()) | |
return state_dict | |
def bigcode_config_to_gpt2_config(bigcode_config: GPTBigCodeConfig) -> GPT2Config: | |
return GPT2Config( | |
activation_function=bigcode_config.activation_function, | |
attn_pdrop=bigcode_config.attn_pdrop, | |
bos_token_id=bigcode_config.bos_token_id, | |
embd_pdrop=bigcode_config.embd_pdrop, | |
eos_token_id=bigcode_config.eos_token_id, | |
initializer_range=bigcode_config.initializer_range, | |
layer_norm_epsilon=bigcode_config.layer_norm_epsilon, | |
max_batch_size=bigcode_config.max_batch_size, | |
max_sequence_length=bigcode_config.max_sequence_length, | |
model_type=bigcode_config.model_type, | |
multi_query=bigcode_config.multi_query, | |
n_embd=bigcode_config.n_embd, | |
n_head=bigcode_config.n_head, | |
n_inner=bigcode_config.n_inner, | |
n_layer=bigcode_config.n_layer, | |
n_positions=bigcode_config.n_positions, | |
resid_pdrop=bigcode_config.resid_pdrop, | |
scale_attn_weights=bigcode_config.scale_attn_weights, | |
summary_activation=bigcode_config.summary_activation, | |
summary_first_dropout=bigcode_config.summary_first_dropout, | |
summary_proj_to_labels=bigcode_config.summary_proj_to_labels, | |
summary_type=bigcode_config.summary_type, | |
summary_use_proj=bigcode_config.summary_use_proj, | |
use_cache=bigcode_config.use_cache, | |
vocab_size=bigcode_config.vocab_size, | |
) | |