Spaces:
Sleeping
Sleeping
# Copyright (c) 2022, Tri Dao. | |
# This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation. | |
# https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py | |
# https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py | |
# Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py | |
import logging | |
import re | |
from collections import OrderedDict | |
from collections.abc import Sequence | |
from functools import partial | |
from typing import Any, Mapping | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange | |
from transformers import BertConfig, PretrainedConfig | |
from transformers.models.bert.modeling_bert import ( | |
BaseModelOutputWithPoolingAndCrossAttentions, | |
BertForPreTrainingOutput, | |
) | |
from flash_attn.bert_padding import ( | |
index_first_axis, | |
index_first_axis_residual, | |
pad_input, | |
unpad_input, | |
) | |
from flash_attn.modules.block import Block | |
from flash_attn.modules.embedding import BertEmbeddings | |
from flash_attn.modules.mha import MHA | |
from flash_attn.modules.mlp import FusedMLP, Mlp | |
from flash_attn.utils.pretrained import state_dict_from_pretrained | |
try: | |
from flash_attn.ops.fused_dense import FusedDense | |
except ImportError: | |
FusedDense = None | |
try: | |
from flash_attn.ops.triton.layer_norm import layer_norm_fn | |
except ImportError: | |
layer_norm_fn = None | |
try: | |
from flash_attn.losses.cross_entropy import CrossEntropyLoss | |
except ImportError: | |
CrossEntropyLoss = None | |
logger = logging.getLogger(__name__) | |
def create_mixer_cls(config, cross_attn=False, return_residual=False): | |
use_flash_attn = getattr(config, "use_flash_attn", False) | |
fused_bias_fc = getattr(config, "fused_bias_fc", False) | |
rotary_kwargs = {} | |
if config.position_embedding_type == "rotary": | |
rotary_kwargs["rotary_emb_dim"] = getattr(config, "rotary_emb_dim", config.hidden_size) | |
rotary_kwargs["rotary_emb_base"] = getattr(config, "rotary_emb_base", 10000.0) | |
rotary_kwargs["rotary_emb_scale_base"] = getattr(config, "rotary_emb_scale_base", None) | |
rotary_kwargs["rotary_emb_interleaved"] = getattr(config, "rotary_emb_interleaved", False) | |
mixer_cls = partial( | |
MHA, | |
num_heads=config.num_attention_heads, | |
cross_attn=cross_attn, | |
dropout=config.attention_probs_dropout_prob, | |
causal=False, | |
fused_bias_fc=fused_bias_fc, | |
use_flash_attn=use_flash_attn, | |
return_residual=return_residual, | |
**rotary_kwargs, | |
) | |
return mixer_cls | |
def create_mlp_cls(config, layer_idx=None, return_residual=False): | |
inner_dim = config.intermediate_size | |
fused_mlp = getattr(config, "fused_mlp", False) | |
if fused_mlp: | |
assert config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"], ( | |
"fused_mlp only " "supports approximate gelu" | |
) | |
if not fused_mlp: | |
approximate = ( | |
"tanh" | |
if config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] | |
else "none" | |
) | |
mlp_cls = partial( | |
Mlp, | |
hidden_features=inner_dim, | |
activation=partial(F.gelu, approximate=approximate), | |
return_residual=return_residual, | |
) | |
else: | |
if FusedMLP is None: | |
raise ImportError("fused_dense is not installed") | |
mlp_checkpoint_lvl = getattr(config, "mlp_checkpoint_lvl", 0) | |
# mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer | |
if isinstance(mlp_checkpoint_lvl, Sequence): | |
assert layer_idx is not None | |
mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx] | |
mlp_cls = partial( | |
FusedMLP, | |
hidden_features=inner_dim, | |
checkpoint_lvl=mlp_checkpoint_lvl, | |
return_residual=return_residual, | |
) | |
return mlp_cls | |
def create_block(config, layer_idx=None): | |
last_layer_subset = getattr(config, "last_layer_subset", False) | |
cross_attn = last_layer_subset and layer_idx == config.num_hidden_layers - 1 | |
# TD [2022-12-19]: For cross attention (last layer), we actually want to return the | |
# residual x_kv, not residual x. But it's annoying to change the API (and it only affects | |
# one layer) so we just choose not to return residual in this case. | |
return_residual = not cross_attn | |
mixer_cls = create_mixer_cls(config, cross_attn, return_residual=return_residual) | |
mlp_cls = create_mlp_cls(config, layer_idx, return_residual=return_residual) | |
norm_cls = partial(nn.LayerNorm, eps=config.layer_norm_eps) | |
block = Block( | |
config.hidden_size, | |
mixer_cls, | |
mlp_cls, | |
norm_cls=norm_cls, | |
prenorm=False, | |
resid_dropout1=config.hidden_dropout_prob, | |
resid_dropout2=config.hidden_dropout_prob, | |
fused_dropout_add_ln=getattr(config, "fused_dropout_add_ln", False), | |
return_residual=return_residual, | |
) | |
return block | |
# https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748 | |
def _init_weights(module, initializer_range=0.02): | |
if isinstance(module, nn.Linear): | |
nn.init.normal_(module.weight, std=initializer_range) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
elif isinstance(module, nn.Embedding): | |
nn.init.normal_(module.weight, std=initializer_range) | |
if module.padding_idx is not None: | |
nn.init.zeros_(module.weight[module.padding_idx]) | |
class BertEncoder(nn.Module): | |
def __init__(self, config: BertConfig): | |
super().__init__() | |
self.use_flash_attn = getattr(config, "use_flash_attn", False) | |
self.layers = nn.ModuleList( | |
[create_block(config, layer_idx=i) for i in range(config.num_hidden_layers)] | |
) | |
def forward(self, hidden_states, key_padding_mask=None, subset_mask=None): | |
"""If subset_mask is not None, we only want output for the subset of the sequence. | |
This means that we only compute the last layer output for these tokens. | |
subset_mask: (batch, seqlen), dtype=torch.bool | |
""" | |
if key_padding_mask is None or not self.use_flash_attn: | |
mixer_kwargs = ( | |
{"key_padding_mask": key_padding_mask} if key_padding_mask is not None else None | |
) | |
for layer in self.layers: | |
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs) | |
if subset_mask is not None: | |
hidden_states = hidden_states[subset_mask] | |
else: | |
batch, seqlen = hidden_states.shape[:2] | |
hidden_states, indices, cu_seqlens, max_seqlen_in_batch = unpad_input( | |
hidden_states, key_padding_mask | |
) | |
mixer_kwargs = {"cu_seqlens": cu_seqlens, "max_seqlen": max_seqlen_in_batch} | |
if subset_mask is None: | |
for layer in self.layers: | |
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs) | |
hidden_states = pad_input(hidden_states, indices, batch, seqlen) | |
else: | |
for layer in self.layers[:-1]: | |
hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs) | |
if key_padding_mask is not None: | |
subset_idx = torch.nonzero( | |
subset_mask[key_padding_mask], as_tuple=False | |
).flatten() | |
subset_seqlens = (subset_mask & key_padding_mask).sum(dim=-1, dtype=torch.int32) | |
subset_cu_seqlens = F.pad( | |
torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32), (1, 0) | |
) | |
else: | |
subset_idx = torch.nonzero(subset_mask, as_tuple=False).flatten() | |
subset_seqlens = subset_mask.sum(dim=-1, dtype=torch.int32) | |
subset_cu_seqlens = F.pad( | |
torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32), (1, 0) | |
) | |
hidden_states_subset, hidden_states = index_first_axis_residual( | |
hidden_states, subset_idx | |
) | |
# It's ok to set max_seqlen_q to be much larger | |
mixer_kwargs = { | |
"x_kv": hidden_states, | |
"cu_seqlens": subset_cu_seqlens, | |
"max_seqlen": max_seqlen_in_batch, | |
"cu_seqlens_k": cu_seqlens, | |
"max_seqlen_k": max_seqlen_in_batch, | |
} | |
hidden_states = self.layers[-1](hidden_states_subset, mixer_kwargs=mixer_kwargs) | |
return hidden_states | |
class BertPooler(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
fused_bias_fc = getattr(config, "fused_bias_fc", False) | |
if fused_bias_fc and FusedDense is None: | |
raise ImportError("fused_dense is not installed") | |
linear_cls = nn.Linear if not fused_bias_fc else FusedDense | |
self.dense = linear_cls(config.hidden_size, config.hidden_size) | |
self.activation = nn.Tanh() | |
def forward(self, hidden_states, pool=True): | |
# We "pool" the model by simply taking the hidden state corresponding | |
# to the first token. | |
first_token_tensor = hidden_states[:, 0] if pool else hidden_states | |
pooled_output = self.dense(first_token_tensor) | |
pooled_output = self.activation(pooled_output) | |
return pooled_output | |
class BertPredictionHeadTransform(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
fused_bias_fc = getattr(config, "fused_bias_fc", False) | |
if fused_bias_fc and FusedDense is None: | |
raise ImportError("fused_dense is not installed") | |
self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False) | |
if self.fused_dropout_add_ln and layer_norm_fn is None: | |
raise ImportError("Triton is not installed") | |
linear_cls = nn.Linear if not fused_bias_fc else FusedDense | |
self.dense = linear_cls(config.hidden_size, config.hidden_size) | |
approximate = ( | |
"tanh" | |
if config.hidden_act in ["gelu_new", "gelu_fast", "gelu_pytorch_tanh"] | |
else "none" | |
) | |
self.transform_act_fn = nn.GELU(approximate=approximate) | |
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.transform_act_fn(hidden_states) | |
if not self.fused_dropout_add_ln: | |
hidden_states = self.layer_norm(hidden_states) | |
else: | |
hidden_states = layer_norm_fn( | |
hidden_states, self.layer_norm.weight, self.layer_norm.bias, eps=self.layer_norm.eps | |
) | |
return hidden_states | |
class BertLMPredictionHead(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
fused_bias_fc = getattr(config, "fused_bias_fc", False) | |
if fused_bias_fc and FusedDense is None: | |
raise ImportError("fused_dense is not installed") | |
linear_cls = nn.Linear if not fused_bias_fc else FusedDense | |
self.transform = BertPredictionHeadTransform(config) | |
# The output weights are the same as the input embeddings, but there is | |
# an output-only bias for each token. | |
self.decoder = linear_cls(config.hidden_size, config.vocab_size, bias=True) | |
def forward(self, hidden_states): | |
hidden_states = self.transform(hidden_states) | |
hidden_states = self.decoder(hidden_states) | |
return hidden_states | |
class BertPreTrainingHeads(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.predictions = BertLMPredictionHead(config) | |
self.seq_relationship = nn.Linear(config.hidden_size, 2) | |
def forward(self, sequence_output, pooled_output): | |
prediction_scores = self.predictions(sequence_output) | |
seq_relationship_score = self.seq_relationship(pooled_output) | |
return prediction_scores, seq_relationship_score | |
class BertPreTrainedModel(nn.Module): | |
"""An abstract class to handle weights initialization and | |
a simple interface for dowloading and loading pretrained models. | |
""" | |
def __init__(self, config, *inputs, **kwargs): | |
super().__init__() | |
if not isinstance(config, BertConfig): | |
raise ValueError( | |
"Parameter config in `{}(config)` should be an instance of class `BertConfig`. " | |
"To create a model from a Google pretrained model use " | |
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format( | |
self.__class__.__name__, self.__class__.__name__ | |
) | |
) | |
self.config = config | |
def from_pretrained(cls, model_name, config, *inputs, **kwargs): | |
""" | |
Instantiate a BertPreTrainedModel from a pre-trained model file or a pytorch state dict. | |
Download and cache the pre-trained model file if needed. | |
Params: | |
pretrained_model_name_or_path: either: | |
- a path or url to a pretrained model archive containing: | |
. `bert_config.json` a configuration file for the model | |
. `pytorch_model.bin` a PyTorch dump of a BertForPretraining instance | |
- a path or url to a pretrained model archive containing: | |
. `bert_config.json` a configuration file for the model | |
. `model.chkpt` a TensorFlow checkpoint | |
*inputs, **kwargs: additional input for the specific Bert class | |
(ex: num_labels for BertForSequenceClassification) | |
""" | |
# Instantiate model. | |
model = cls(config, *inputs, **kwargs) | |
load_return = model.load_state_dict( | |
remap_state_dict(state_dict_from_pretrained(model_name), config), strict=False | |
) | |
logger.info(load_return) | |
return model | |
class BertModel(BertPreTrainedModel): | |
def __init__(self, config: BertConfig, add_pooling_layer=True): | |
super().__init__(config) | |
self.pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) | |
if config.vocab_size % self.pad_vocab_size_multiple != 0: | |
config.vocab_size += self.pad_vocab_size_multiple - ( | |
config.vocab_size % self.pad_vocab_size_multiple | |
) | |
self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False) | |
if self.fused_dropout_add_ln and layer_norm_fn is None: | |
raise ImportError("Triton is not installed") | |
assert config.hidden_act in ["gelu", "gelu_new", "gelu_fast", "gelu_pytorch_tanh"] | |
self.embeddings = BertEmbeddings( | |
config.hidden_size, | |
config.vocab_size, | |
config.max_position_embeddings, | |
config.type_vocab_size, | |
padding_idx=config.pad_token_id, | |
) | |
self.emb_drop = nn.Dropout(config.hidden_dropout_prob) | |
self.emb_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
self.encoder = BertEncoder(config) | |
self.pooler = BertPooler(config) if add_pooling_layer else None | |
self.apply(partial(_init_weights, initializer_range=config.initializer_range)) | |
def forward( | |
self, | |
input_ids, | |
position_ids=None, | |
token_type_ids=None, | |
attention_mask=None, | |
masked_tokens_mask=None, | |
): | |
"""If masked_tokens_mask is not None (i.e. last_layer_subset == True in BertForPreTraining), | |
we only want the output for the masked tokens. This means that we only compute the last | |
layer output for these tokens. | |
masked_tokens_mask: (batch, seqlen), dtype=torch.bool | |
""" | |
hidden_states = self.embeddings( | |
input_ids, position_ids=position_ids, token_type_ids=token_type_ids | |
) | |
# TD [2022-12:18]: Don't need to force residual in fp32 | |
# BERT puts embedding LayerNorm before embedding dropout. | |
if not self.fused_dropout_add_ln: | |
hidden_states = self.emb_ln(hidden_states) | |
else: | |
hidden_states = layer_norm_fn( | |
hidden_states, self.emb_ln.weight, self.emb_ln.bias, eps=self.emb_ln.eps | |
) | |
hidden_states = self.emb_drop(hidden_states) | |
if masked_tokens_mask is not None: | |
batch_size, seqlen = input_ids.shape[:2] | |
# We also need the first column for the CLS token | |
first_col_mask = torch.zeros( | |
batch_size, seqlen, dtype=torch.bool, device=input_ids.device | |
) | |
first_col_mask[:, 0] = True | |
subset_mask = masked_tokens_mask | first_col_mask | |
else: | |
subset_mask = None | |
sequence_output = self.encoder( | |
hidden_states, key_padding_mask=attention_mask, subset_mask=subset_mask | |
) | |
if masked_tokens_mask is None: | |
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None | |
else: | |
# TD [2022-03-01]: the indexing here is very tricky. | |
if attention_mask is not None: | |
subset_idx = subset_mask[attention_mask] | |
pool_input = sequence_output[first_col_mask[attention_mask][subset_idx]] | |
sequence_output = sequence_output[masked_tokens_mask[attention_mask][subset_idx]] | |
else: | |
pool_input = sequence_output[first_col_mask[subset_mask]] | |
sequence_output = sequence_output[masked_tokens_mask[subset_mask]] | |
pooled_output = self.pooler(pool_input, pool=False) if self.pooler is not None else None | |
return BaseModelOutputWithPoolingAndCrossAttentions( | |
last_hidden_state=sequence_output, | |
pooler_output=pooled_output, | |
) | |
class BertForPreTraining(BertPreTrainedModel): | |
def __init__(self, config: BertConfig): | |
super().__init__(config) | |
# If dense_seq_output, we only need to pass the hidden states for the masked out tokens | |
# (around 15%) to the classifier heads. | |
self.dense_seq_output = getattr(config, "dense_seq_output", False) | |
# If last_layer_subset, we only need the compute the last layer for a subset of tokens | |
# (e.g., the tokens we need to compute the masked LM loss and the next-sentence prediction). | |
self.last_layer_subset = getattr(config, "last_layer_subset", False) | |
if self.last_layer_subset: | |
assert self.dense_seq_output, "last_layer_subset requires dense_seq_output" | |
use_xentropy = getattr(config, "use_xentropy", False) | |
if use_xentropy and CrossEntropyLoss is None: | |
raise ImportError("xentropy_cuda is not installed") | |
loss_cls = ( | |
nn.CrossEntropyLoss | |
if not use_xentropy | |
else partial(CrossEntropyLoss, inplace_backward=True) | |
) | |
self.bert = BertModel(config) | |
self.cls = BertPreTrainingHeads(config) | |
self.mlm_loss = loss_cls(ignore_index=0) | |
self.nsp_loss = loss_cls(ignore_index=-1) | |
# Initialize weights and apply final processing | |
self.apply(partial(_init_weights, initializer_range=config.initializer_range)) | |
self.tie_weights() | |
def tie_weights(self): | |
self.cls.predictions.decoder.weight = self.bert.embeddings.word_embeddings.weight | |
def forward( | |
self, | |
input_ids, | |
position_ids=None, | |
token_type_ids=None, | |
attention_mask=None, | |
labels=None, | |
next_sentence_label=None, | |
): | |
""" | |
If labels are provided, they must be 0 for masked out tokens (as specified in the attention | |
mask). | |
Outputs: | |
if `labels` and `next_sentence_label` are not `None`: | |
Outputs the total_loss which is the sum of the masked language modeling loss and the next | |
sentence classification loss. | |
if `labels` or `next_sentence_label` is `None`: | |
Outputs a tuple comprising | |
- the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and | |
- the next sentence classification logits of shape [batch_size, 2]. | |
""" | |
masked_tokens_mask = labels > 0 if (self.last_layer_subset and labels is not None) else None | |
outputs = self.bert( | |
input_ids, | |
position_ids=position_ids, | |
token_type_ids=token_type_ids, | |
attention_mask=attention_mask.bool() if attention_mask is not None else None, | |
masked_tokens_mask=masked_tokens_mask, | |
) | |
sequence_output, pooled_output = outputs.last_hidden_state, outputs.pooler_output | |
if self.dense_seq_output and labels is not None: | |
masked_token_idx = torch.nonzero(labels.flatten() > 0, as_tuple=False).flatten() | |
if not self.last_layer_subset: | |
sequence_output = index_first_axis( | |
rearrange(sequence_output, "b s d -> (b s) d"), masked_token_idx | |
) | |
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) | |
total_loss = None | |
if labels is not None and next_sentence_label is not None: | |
if ( | |
self.dense_seq_output and labels is not None | |
): # prediction_scores are already flattened | |
masked_lm_loss = self.mlm_loss( | |
prediction_scores, labels.flatten()[masked_token_idx] | |
) | |
else: | |
masked_lm_loss = self.mlm_loss( | |
rearrange(prediction_scores, "... v -> (...) v"), | |
rearrange(labels, "... -> (...)"), | |
) | |
next_sentence_loss = self.nsp_loss( | |
rearrange(seq_relationship_score, "... t -> (...) t"), | |
rearrange(next_sentence_label, "... -> (...)"), | |
) | |
total_loss = masked_lm_loss.float() + next_sentence_loss.float() | |
return BertForPreTrainingOutput( | |
loss=total_loss, | |
prediction_logits=prediction_scores, | |
seq_relationship_logits=seq_relationship_score, | |
) | |
def remap_state_dict(state_dict, config: PretrainedConfig): | |
""" | |
Map the state_dict of a Huggingface BERT model to be flash_attn compatible. | |
""" | |
# LayerNorm | |
def key_mapping_ln_gamma_beta(key): | |
key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key) | |
key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key) | |
return key | |
state_dict = OrderedDict((key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items()) | |
# Layers | |
def key_mapping_layers(key): | |
return re.sub(r"^bert.encoder.layer.", "bert.encoder.layers.", key) | |
state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items()) | |
# LayerNorm | |
def key_mapping_ln(key): | |
key = re.sub(r"^bert.embeddings.LayerNorm.", "bert.emb_ln.", key) | |
key = re.sub( | |
r"^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)", | |
r"bert.encoder.layers.\1.norm1.\2", | |
key, | |
) | |
key = re.sub( | |
r"^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)", | |
r"bert.encoder.layers.\1.norm2.\2", | |
key, | |
) | |
key = re.sub( | |
r"^cls.predictions.transform.LayerNorm.(weight|bias)", | |
r"cls.predictions.transform.layer_norm.\1", | |
key, | |
) | |
return key | |
state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items()) | |
# MLP | |
def key_mapping_mlp(key): | |
key = re.sub( | |
r"^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)", | |
r"bert.encoder.layers.\1.mlp.fc1.\2", | |
key, | |
) | |
key = re.sub( | |
r"^bert.encoder.layers.(\d+).output.dense.(weight|bias)", | |
r"bert.encoder.layers.\1.mlp.fc2.\2", | |
key, | |
) | |
return key | |
state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items()) | |
# Attention | |
last_layer_subset = getattr(config, "last_layer_subset", False) | |
for d in range(config.num_hidden_layers): | |
Wq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.weight") | |
Wk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.weight") | |
Wv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.weight") | |
bq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.bias") | |
bk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.bias") | |
bv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.bias") | |
if not (last_layer_subset and d == config.num_hidden_layers - 1): | |
state_dict[f"bert.encoder.layers.{d}.mixer.Wqkv.weight"] = torch.cat( | |
[Wq, Wk, Wv], dim=0 | |
) | |
state_dict[f"bert.encoder.layers.{d}.mixer.Wqkv.bias"] = torch.cat([bq, bk, bv], dim=0) | |
else: | |
state_dict[f"bert.encoder.layers.{d}.mixer.Wq.weight"] = Wq | |
state_dict[f"bert.encoder.layers.{d}.mixer.Wkv.weight"] = torch.cat([Wk, Wv], dim=0) | |
state_dict[f"bert.encoder.layers.{d}.mixer.Wq.bias"] = bq | |
state_dict[f"bert.encoder.layers.{d}.mixer.Wkv.bias"] = torch.cat([bk, bv], dim=0) | |
def key_mapping_attn(key): | |
return re.sub( | |
r"^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)", | |
r"bert.encoder.layers.\1.mixer.out_proj.\2", | |
key, | |
) | |
state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items()) | |
def key_mapping_decoder_bias(key): | |
return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key) | |
state_dict = OrderedDict((key_mapping_decoder_bias(k), v) for k, v in state_dict.items()) | |
# Word embedding | |
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) | |
if pad_vocab_size_multiple > 1: | |
word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"] | |
state_dict["bert.embeddings.word_embeddings.weight"] = F.pad( | |
word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0]) | |
) | |
decoder_weight = state_dict["cls.predictions.decoder.weight"] | |
state_dict["cls.predictions.decoder.weight"] = F.pad( | |
decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0]) | |
) | |
# If the vocab was padded, we want to set the decoder bias for those padded indices to be | |
# strongly negative (i.e. the decoder shouldn't predict those indices). | |
# TD [2022-05-09]: I don't think it affects the MLPerf training. | |
decoder_bias = state_dict["cls.predictions.decoder.bias"] | |
state_dict["cls.predictions.decoder.bias"] = F.pad( | |
decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0 | |
) | |
return state_dict | |
def inv_remap_state_dict(state_dict, config: PretrainedConfig): | |
""" | |
Map the state_dict of a flash_attn model to be Huggingface BERT compatible. | |
This function is meant to be the inverse of remap_state_dict. | |
""" | |
# Word embedding | |
pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1) | |
if pad_vocab_size_multiple > 1: | |
word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"] | |
decoder_weight = state_dict["cls.predictions.decoder.weight"] | |
decoder_bias = state_dict["cls.predictions.decoder.bias"] | |
# unpad embeddings | |
state_dict["bert.embeddings.word_embeddings.weight"] = word_embeddings[ | |
: config.orig_vocab_size, : | |
] | |
state_dict["cls.predictions.decoder.weight"] = decoder_weight[: config.orig_vocab_size, :] | |
state_dict["cls.predictions.decoder.bias"] = decoder_bias[: config.orig_vocab_size] | |
for d in range(config.num_hidden_layers): | |
last_layer_subset = getattr(config, "last_layer_subset", False) | |
if not last_layer_subset or d != (config.num_hidden_layers - 1): | |
Wqkv_weights = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wqkv.weight") | |
Wqkv_biases = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wqkv.bias") | |
state_dict[f"bert.encoder.layers.{d}.attention.self.query.weight"] = Wqkv_weights[ | |
: Wqkv_weights.shape[0] // 3, : | |
] | |
state_dict[f"bert.encoder.layers.{d}.attention.self.key.weight"] = Wqkv_weights[ | |
Wqkv_weights.shape[0] // 3 : 2 * Wqkv_weights.shape[0] // 3, : | |
] | |
state_dict[f"bert.encoder.layers.{d}.attention.self.value.weight"] = Wqkv_weights[ | |
2 * Wqkv_weights.shape[0] // 3 :, : | |
] | |
state_dict[f"bert.encoder.layers.{d}.attention.self.query.bias"] = Wqkv_biases[ | |
: Wqkv_biases.shape[0] // 3 | |
] | |
state_dict[f"bert.encoder.layers.{d}.attention.self.key.bias"] = Wqkv_biases[ | |
Wqkv_biases.shape[0] // 3 : 2 * Wqkv_biases.shape[0] // 3 | |
] | |
state_dict[f"bert.encoder.layers.{d}.attention.self.value.bias"] = Wqkv_biases[ | |
2 * Wqkv_biases.shape[0] // 3 : | |
] | |
else: | |
Wq_weight = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wq.weight") | |
Wkv_weights = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wkv.weight") | |
Wq_bias = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wq.bias") | |
Wkv_biases = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wkv.bias") | |
state_dict[f"bert.encoder.layers.{d}.attention.self.query.weight"] = Wq_weight | |
state_dict[f"bert.encoder.layers.{d}.attention.self.key.weight"] = Wkv_weights[ | |
: Wkv_weights.shape[0] // 2, : | |
] | |
state_dict[f"bert.encoder.layers.{d}.attention.self.value.weight"] = Wkv_weights[ | |
Wkv_weights.shape[0] // 2 :, : | |
] | |
state_dict[f"bert.encoder.layers.{d}.attention.self.query.bias"] = Wq_bias | |
state_dict[f"bert.encoder.layers.{d}.attention.self.key.bias"] = Wkv_biases[ | |
: Wkv_biases.shape[0] // 2 | |
] | |
state_dict[f"bert.encoder.layers.{d}.attention.self.value.bias"] = Wkv_biases[ | |
Wkv_biases.shape[0] // 2 : | |
] | |
def inv_key_mapping_ln(key): | |
key = re.sub(r"bert.emb_ln.", "bert.embeddings.LayerNorm.", key) | |
key = re.sub( | |
r"bert.encoder.layers.(\d+).norm1.(weight|bias)", | |
r"bert.encoder.layers.\1.attention.output.LayerNorm.\2", | |
key, | |
) | |
key = re.sub( | |
r"bert.encoder.layers.(\d+).norm2.(weight|bias)", | |
r"bert.encoder.layers.\1.output.LayerNorm.\2", | |
key, | |
) | |
key = re.sub( | |
r"cls.predictions.transform.layer_norm.(weight|bias)", | |
r"cls.predictions.transform.LayerNorm.\1", | |
key, | |
) | |
return key | |
def inv_key_mapping_ln_gamma_beta(key): | |
key = re.sub(r"LayerNorm.weight$", "LayerNorm.gamma", key) | |
key = re.sub(r"LayerNorm.bias$", "LayerNorm.beta", key) | |
return key | |
def inv_key_mapping_layers(key): | |
return re.sub(r"bert.encoder.layers.", "bert.encoder.layer.", key) | |
def inv_key_mapping_mlp(key): | |
key = re.sub( | |
r"bert.encoder.layer.(\d+).mlp.fc1.(weight|bias)", | |
r"bert.encoder.layer.\1.intermediate.dense.\2", | |
key, | |
) | |
key = re.sub( | |
r"bert.encoder.layer.(\d+).mlp.fc2.(weight|bias)", | |
r"bert.encoder.layer.\1.output.dense.\2", | |
key, | |
) | |
return key | |
def inv_key_mapping_attn(key): | |
return re.sub( | |
r"bert.encoder.layer.(\d+).mixer.out_proj.(weight|bias)", | |
r"bert.encoder.layer.\1.attention.output.dense.\2", | |
key, | |
) | |
def inv_key_mapping_decoder_bias(key): | |
return re.sub(r"cls.predictions.decoder.bias", "cls.predictions.bias", key) | |
state_dict = OrderedDict((inv_key_mapping_ln(key), value) for key, value in state_dict.items()) | |
state_dict = OrderedDict( | |
(inv_key_mapping_ln_gamma_beta(key), value) for key, value in state_dict.items() | |
) | |
state_dict = OrderedDict( | |
(inv_key_mapping_layers(key), value) for key, value in state_dict.items() | |
) | |
state_dict = OrderedDict((inv_key_mapping_mlp(key), value) for key, value in state_dict.items()) | |
state_dict = OrderedDict( | |
(inv_key_mapping_attn(key), value) for key, value in state_dict.items() | |
) | |
state_dict = OrderedDict( | |
(inv_key_mapping_decoder_bias(key), value) for key, value in state_dict.items() | |
) | |
return state_dict | |