Spaces:
Sleeping
Sleeping
# [2022-10-23] Copied from https://github.com/NVIDIA/apex/blob/master/apex/transformer/functional/fused_softmax.py | |
# for benchmarking. | |
# We added support for seqlen=2k and seqlen=4k | |
# coding=utf-8 | |
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import torch | |
from apex._autocast_utils import _cast_if_autocast_enabled | |
from apex.transformer.enums import AttnMaskType | |
from fused_softmax_lib import ( | |
scaled_masked_softmax_backward, | |
scaled_masked_softmax_forward, | |
scaled_masked_softmax_get_batch_per_block, | |
scaled_upper_triang_masked_softmax_backward, | |
scaled_upper_triang_masked_softmax_forward, | |
) | |
class ScaledUpperTriangMaskedSoftmax(torch.autograd.Function): | |
""" | |
Fused operation which performs following three operations in sequence | |
1. Scale the tensor. | |
2. Apply upper triangular mask (typically used in gpt models). | |
3. Perform softmax. | |
""" | |
def forward(ctx, inputs, scale): | |
scale_t = torch.tensor([scale]) | |
softmax_results = scaled_upper_triang_masked_softmax_forward(inputs, scale_t[0]) | |
ctx.save_for_backward(softmax_results, scale_t) | |
return softmax_results | |
def backward(ctx, output_grads): | |
softmax_results, scale_t = ctx.saved_tensors | |
input_grads = scaled_upper_triang_masked_softmax_backward( | |
output_grads, softmax_results, scale_t[0] | |
) | |
return input_grads, None | |
def scaled_upper_triang_masked_softmax(inputs, _, scale): | |
b, np, sq, sk = inputs.size() | |
assert sq == sk, "causal mask is only for self attention" | |
# Reshaping input to 3D tensor (attn_batches, sq, sk) | |
inputs = inputs.view(-1, sq, sk) | |
args = _cast_if_autocast_enabled(inputs, scale) | |
with torch.cuda.amp.autocast(enabled=False): | |
probs = ScaledUpperTriangMaskedSoftmax.apply(*args) | |
return probs.view(b, np, sq, sk) | |
# NOTE (mkozuki): `ScaledMaskedSoftmax` somehow doesn't work well with `torch.cuda.amp.custom_fwd`. | |
# Without `cast_inputs` kwarg, somehow inputs are not cast to dtype used in the autocast context. | |
# So I needed to manually write two `torch.autograd.Function` inheritances. | |
# Fused operation which performs following three operations in sequence | |
# 1. Scale the tensor. | |
# 2. Apply the mask. | |
# 3. Perform softmax. | |
class ScaledMaskedSoftmax(torch.autograd.Function): | |
def forward(ctx, inputs, mask, scale): | |
scale_t = torch.tensor([scale]) | |
softmax_results = scaled_masked_softmax_forward(inputs, mask, scale_t[0]) | |
ctx.save_for_backward(softmax_results, scale_t) | |
return softmax_results | |
def backward(ctx, output_grads): | |
softmax_results, scale_t = ctx.saved_tensors | |
input_grads = scaled_masked_softmax_backward(output_grads, softmax_results, scale_t[0]) | |
return input_grads, None, None | |
def scaled_masked_softmax(inputs, mask, scale): | |
# input is 4D tensor (b, np, sq, sk) | |
args = _cast_if_autocast_enabled(inputs, mask, scale) | |
with torch.cuda.amp.autocast(enabled=False): | |
return ScaledMaskedSoftmax.apply(*args) | |
class FusedScaleMaskSoftmax(torch.nn.Module): | |
""" | |
fused operation: scaling + mask + softmax | |
Arguments: | |
input_in_fp16: flag to indicate if input in fp16 data format. | |
input_in_bf16: flag to indicate if input in bf16 data format. | |
attn_mask_type: attention mask type (pad or causal) | |
scaled_masked_softmax_fusion: flag to indicate user want to use softmax fusion | |
mask_func: mask function to be applied. | |
softmax_in_fp32: if true, softmax in performed at fp32 precision. | |
scale: scaling factor used in input tensor scaling. | |
""" | |
def __init__( | |
self, | |
input_in_fp16, | |
input_in_bf16, | |
attn_mask_type, | |
scaled_masked_softmax_fusion, | |
mask_func, | |
softmax_in_fp32, | |
scale, | |
): | |
super().__init__() | |
self.input_in_fp16 = input_in_fp16 | |
self.input_in_bf16 = input_in_bf16 | |
if self.input_in_fp16 and self.input_in_bf16: | |
raise RuntimeError("both fp16 and bf16 flags cannot be active at the same time.") | |
self.input_in_float16 = self.input_in_fp16 or self.input_in_bf16 | |
self.attn_mask_type = attn_mask_type | |
self.scaled_masked_softmax_fusion = scaled_masked_softmax_fusion | |
self.mask_func = mask_func | |
self.softmax_in_fp32 = softmax_in_fp32 | |
self.scale = scale | |
if not (self.scale is None or softmax_in_fp32): | |
raise RuntimeError("softmax should be in fp32 when scaled") | |
if self.scaled_masked_softmax_fusion: | |
if self.attn_mask_type == AttnMaskType.causal: | |
self.fused_softmax_func = scaled_upper_triang_masked_softmax | |
elif self.attn_mask_type == AttnMaskType.padding: | |
self.fused_softmax_func = scaled_masked_softmax | |
else: | |
raise ValueError("Invalid attn_mask_type.") | |
def forward(self, input, mask): | |
# [b, np, sq, sk] | |
assert input.dim() == 4 | |
if self.is_kernel_available(mask, *input.size()): | |
return self.forward_fused_softmax(input, mask) | |
else: | |
return self.forward_torch_softmax(input, mask) | |
def is_kernel_available(self, mask, b, np, sq, sk): | |
attn_batches = b * np | |
if ( | |
self.scaled_masked_softmax_fusion # user want to fuse | |
and self.input_in_float16 # input must be fp16 | |
and ( | |
self.attn_mask_type == AttnMaskType.causal | |
or (self.attn_mask_type == AttnMaskType.padding and mask is not None) | |
) | |
and 16 < sk <= 8192 # sk must be 16 ~ 8192 | |
and sq % 4 == 0 # sq must be divisor of 4 | |
and sk % 4 == 0 # sk must be divisor of 4 | |
and attn_batches % 4 == 0 # np * b must be divisor of 4 | |
): | |
if 0 <= sk <= 8192: | |
batch_per_block = self.get_batch_per_block(sq, sk, b, np) | |
if self.attn_mask_type == AttnMaskType.causal: | |
if attn_batches % batch_per_block == 0: | |
return True | |
else: | |
if sq % batch_per_block == 0: | |
return True | |
return False | |
def forward_fused_softmax(self, input, mask): | |
# input.shape = [b, np, sq, sk] | |
scale = self.scale if self.scale is not None else 1.0 | |
return self.fused_softmax_func(input, mask, scale) | |
def forward_torch_softmax(self, input, mask): | |
if self.input_in_float16 and self.softmax_in_fp32: | |
input = input.float() | |
if self.scale is not None: | |
input = input * self.scale | |
mask_output = self.mask_func(input, mask) if mask is not None else input | |
probs = torch.nn.Softmax(dim=-1)(mask_output) | |
if self.input_in_float16 and self.softmax_in_fp32: | |
if self.input_in_fp16: | |
probs = probs.half() | |
else: | |
probs = probs.bfloat16() | |
return probs | |
def get_batch_per_block(sq, sk, b, np): | |
return scaled_masked_softmax_get_batch_per_block(sq, sk, b, np) | |