Factory-POC / flash-attention /flash_attn /flash_blocksparse_attention.py
Do0rMaMu's picture
Upload folder using huggingface_hub
e45d058 verified
import math
import hydra
import torch
import torch.nn as nn
from einops import rearrange
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
from flash_attn.flash_blocksparse_attn_interface import (
convert_blockmask,
flash_blocksparse_attn_func,
)
class FlashBlocksparseAttention(nn.Module):
"""Implement the scaled dot product attention with softmax.
Arguments
---------
softmax_temp: The temperature to use for the softmax attention.
(default: 1/sqrt(d_keys) where d_keys is computed at
runtime)
attention_dropout: The dropout rate to apply to the attention
(default: 0.1)
"""
def __init__(
self,
sparsity_config,
softmax_temp=None,
attention_dropout=0.0,
max_seq_length=2048,
device=None,
dtype=None,
):
super().__init__()
self.sparsity_config = hydra.utils.instantiate(sparsity_config)
self.softmax_temp = softmax_temp
self.dropout_p = attention_dropout
# initialize sparse layout and register as buffer
max_seq_length = ((max_seq_length + 256 - 1) // 256) * 256
layout = self.sparsity_config.make_layout(max_seq_length)
self.register_buffer("layout", layout)
blockmask_converted = convert_blockmask(self.layout, causal=False)
self.register_buffer("blockmask_converted", blockmask_converted)
# logger.info(f'Attention class {self.__class__}: saving={self.layout.float().mean()}')
def forward(
self,
qkv,
attn_mask=None,
key_padding_mask=None,
causal=False,
cu_seqlens=None,
max_s=None,
need_weights=False,
convert_mask=True,
):
"""Implements the multihead softmax attention.
Arguments
---------
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
attn_mask: An implementation of BaseMask that encodes where each
query can attend to
key_padding_mask: An implementation of BaseMask that encodes how
many query each sequence in the batch consists of
"""
assert not need_weights
assert attn_mask is None
assert qkv.dtype == torch.float16
assert qkv.is_cuda
if cu_seqlens is None:
batch_size = qkv.shape[0]
seqlen = qkv.shape[1]
# Convert mask to take a subset
seqlen_rounded = ((seqlen + 256 - 1) // 256) * 256
assert seqlen_rounded // 16 <= self.layout.shape[0], (
seqlen_rounded // 256 <= self.layout.shape[1]
)
blockmask = self.layout[: seqlen_rounded // 16, : seqlen_rounded // 256]
if key_padding_mask is None:
qkv = rearrange(qkv, "b s ... -> (b s) ...")
max_s = seqlen
cu_seqlens = torch.arange(
0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, device=qkv.device
)
output = flash_blocksparse_attn_func(
qkv,
cu_seqlens,
blockmask,
self.dropout_p if self.training else 0.0,
max_s,
softmax_scale=self.softmax_temp,
causal=causal,
)
output = rearrange(output, "(b s) ... -> b s ...", b=batch_size)
else:
key_padding_mask_bool = key_padding_mask.bool_matrix
nheads = qkv.shape[-2]
x = rearrange(qkv, "b s three h d -> b s (three h d)")
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask_bool)
x_unpad = rearrange(x_unpad, "nnz (three h d) -> nnz three h d", three=3, h=nheads)
output_unpad = flash_blocksparse_attn_func(
x_unpad,
cu_seqlens,
blockmask,
self.dropout_p if self.training else 0.0,
max_s,
softmax_scale=self.softmax_temp,
causal=causal,
)
output = rearrange(
pad_input(
rearrange(output_unpad, "nnz h d -> nnz (h d)"), indices, batch_size, seqlen
),
"b s (h d) -> b s h d",
h=nheads,
)
else:
assert max_s is not None
seqlen = max_s
# Convert mask to take a subset
seqlen_rounded = ((seqlen + 256 - 1) // 256) * 256
assert seqlen_rounded // 16 <= self.layout.shape[0], (
seqlen_rounded // 256 <= self.layout.shape[1]
)
blockmask = self.layout[: seqlen_rounded // 16, : seqlen_rounded // 256]
if convert_mask:
output = flash_blocksparse_attn_func(
qkv,
cu_seqlens,
blockmask,
self.dropout_p if self.training else 0.0,
max_s,
softmax_scale=self.softmax_temp,
causal=causal,
)
else:
output = flash_blocksparse_attn_func(
qkv,
cu_seqlens,
self.blockmask_converted,
self.dropout_p if self.training else 0.0,
max_s,
softmax_scale=self.softmax_temp,
causal=causal,
convert_mask=False,
)
return output, None
class FlashBlocksparseMHA(nn.Module):
def __init__(
self,
embed_dim,
num_heads,
sparsity_config,
bias=True,
batch_first=True,
attention_dropout=0.0,
causal=False,
max_seq_length=2048,
device=None,
dtype=None,
**kwargs,
) -> None:
assert batch_first
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.embed_dim = embed_dim
self.causal = causal
self.num_heads = num_heads
assert self.embed_dim % num_heads == 0, "self.kdim must be divisible by num_heads"
self.head_dim = self.embed_dim // num_heads
assert self.head_dim in [16, 32, 64], "Only support head_dim == 16, 32, or 64"
self.Wqkv = nn.Linear(embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs)
self.inner_attn = FlashBlocksparseAttention(
sparsity_config,
attention_dropout=attention_dropout,
max_seq_length=max_seq_length,
**factory_kwargs,
)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias, **factory_kwargs)
def forward(
self, x, x_ignored_, x_ignored_1_, attn_mask=None, key_padding_mask=None, need_weights=False
):
qkv = self.Wqkv(x)
qkv = rearrange(qkv, "b s (three h d) -> b s three h d", three=3, h=self.num_heads)
context, attn_weights = self.inner_attn(
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=self.causal
)
return self.out_proj(rearrange(context, "b s h d -> b s (h d)")), attn_weights