Spaces:
Sleeping
Sleeping
# [2022-10-23] Downloaded from https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py | |
# for benchmarking. | |
# We fixed a few dtype cast to make it work for bf16 | |
""" | |
Fused Attention | |
=============== | |
This is a Triton implementation of the Flash Attention algorithm | |
(see: Dao et al., https://arxiv.org/pdf/2205.14135v2.pdf; Rabe and Staats https://arxiv.org/pdf/2112.05682v2.pdf) | |
""" | |
import pytest | |
import torch | |
import triton | |
import triton.language as tl | |
def _fwd_kernel( | |
Q, | |
K, | |
V, | |
sm_scale, | |
TMP, | |
L, | |
M, # NOTE: TMP is a scratchpad buffer to workaround a compiler bug | |
Out, | |
stride_qz, | |
stride_qh, | |
stride_qm, | |
stride_qk, | |
stride_kz, | |
stride_kh, | |
stride_kn, | |
stride_kk, | |
stride_vz, | |
stride_vh, | |
stride_vk, | |
stride_vn, | |
stride_oz, | |
stride_oh, | |
stride_om, | |
stride_on, | |
Z, | |
H, | |
N_CTX, | |
BLOCK_M: tl.constexpr, | |
BLOCK_DMODEL: tl.constexpr, | |
BLOCK_N: tl.constexpr, | |
): | |
start_m = tl.program_id(0) | |
off_hz = tl.program_id(1) | |
# initialize offsets | |
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) | |
offs_n = tl.arange(0, BLOCK_N) | |
offs_d = tl.arange(0, BLOCK_DMODEL) | |
off_q = off_hz * stride_qh + offs_m[:, None] * stride_qm + offs_d[None, :] * stride_qk | |
off_k = off_hz * stride_qh + offs_n[:, None] * stride_kn + offs_d[None, :] * stride_kk | |
off_v = off_hz * stride_qh + offs_n[:, None] * stride_qm + offs_d[None, :] * stride_qk | |
# Initialize pointers to Q, K, V | |
q_ptrs = Q + off_q | |
k_ptrs = K + off_k | |
v_ptrs = V + off_v | |
# initialize pointer to m and l | |
t_ptrs = TMP + off_hz * N_CTX + offs_m | |
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") | |
l_i = tl.zeros([BLOCK_M], dtype=tl.float32) | |
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) | |
# load q: it will stay in SRAM throughout | |
q = tl.load(q_ptrs) | |
# loop over k, v and update accumulator | |
for start_n in range(0, (start_m + 1) * BLOCK_M, BLOCK_N): | |
start_n = tl.multiple_of(start_n, BLOCK_N) | |
# -- compute qk ---- | |
k = tl.load(k_ptrs + start_n * stride_kn) | |
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) | |
qk += tl.dot(q, k, trans_b=True) | |
qk *= sm_scale | |
qk += tl.where(offs_m[:, None] >= (start_n + offs_n[None, :]), 0, float("-inf")) | |
# -- compute m_ij, p, l_ij | |
m_ij = tl.max(qk, 1) | |
p = tl.exp(qk - m_ij[:, None]) | |
l_ij = tl.sum(p, 1) | |
# -- update m_i and l_i | |
m_i_new = tl.maximum(m_i, m_ij) | |
alpha = tl.exp(m_i - m_i_new) | |
beta = tl.exp(m_ij - m_i_new) | |
l_i_new = alpha * l_i + beta * l_ij | |
# -- update output accumulator -- | |
# scale p | |
p_scale = beta / l_i_new | |
p = p * p_scale[:, None] | |
# scale acc | |
acc_scale = l_i / l_i_new * alpha | |
tl.store(t_ptrs, acc_scale) | |
acc_scale = tl.load(t_ptrs) # BUG: have to store and immediately load | |
acc = acc * acc_scale[:, None] | |
# update acc | |
v = tl.load(v_ptrs + start_n * stride_vk) | |
p = p.to(v.dtype) | |
acc += tl.dot(p, v) | |
# update m_i and l_i | |
l_i = l_i_new | |
m_i = m_i_new | |
# rematerialize offsets to save registers | |
start_m = tl.program_id(0) | |
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) | |
# write back l and m | |
l_ptrs = L + off_hz * N_CTX + offs_m | |
m_ptrs = M + off_hz * N_CTX + offs_m | |
tl.store(l_ptrs, l_i) | |
tl.store(m_ptrs, m_i) | |
# initialize pointers to output | |
offs_n = tl.arange(0, BLOCK_DMODEL) | |
off_o = off_hz * stride_oh + offs_m[:, None] * stride_om + offs_n[None, :] * stride_on | |
out_ptrs = Out + off_o | |
tl.store(out_ptrs, acc) | |
def _bwd_preprocess( | |
Out, | |
DO, | |
L, | |
NewDO, | |
Delta, | |
BLOCK_M: tl.constexpr, | |
D_HEAD: tl.constexpr, | |
): | |
off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M) | |
off_n = tl.arange(0, D_HEAD) | |
# load | |
o = tl.load(Out + off_m[:, None] * D_HEAD + off_n[None, :]).to(tl.float32) | |
do = tl.load(DO + off_m[:, None] * D_HEAD + off_n[None, :]).to(tl.float32) | |
denom = tl.load(L + off_m).to(tl.float32) | |
# compute | |
do = do / denom[:, None] | |
delta = tl.sum(o * do, axis=1) | |
# write-back | |
tl.store(NewDO + off_m[:, None] * D_HEAD + off_n[None, :], do) | |
tl.store(Delta + off_m, delta) | |
def _bwd_kernel( | |
Q, | |
K, | |
V, | |
sm_scale, | |
Out, | |
DO, | |
DQ, | |
DK, | |
DV, | |
L, | |
M, | |
D, | |
stride_qz, | |
stride_qh, | |
stride_qm, | |
stride_qk, | |
stride_kz, | |
stride_kh, | |
stride_kn, | |
stride_kk, | |
stride_vz, | |
stride_vh, | |
stride_vk, | |
stride_vn, | |
Z, | |
H, | |
N_CTX, | |
num_block, | |
BLOCK_M: tl.constexpr, | |
BLOCK_DMODEL: tl.constexpr, | |
BLOCK_N: tl.constexpr, | |
): | |
off_hz = tl.program_id(0) | |
off_z = off_hz // H | |
off_h = off_hz % H | |
# offset pointers for batch/head | |
Q += off_z * stride_qz + off_h * stride_qh | |
K += off_z * stride_qz + off_h * stride_qh | |
V += off_z * stride_qz + off_h * stride_qh | |
DO += off_z * stride_qz + off_h * stride_qh | |
DQ += off_z * stride_qz + off_h * stride_qh | |
DK += off_z * stride_qz + off_h * stride_qh | |
DV += off_z * stride_qz + off_h * stride_qh | |
for start_n in range(0, num_block): | |
lo = start_n * BLOCK_M | |
# initialize row/col offsets | |
offs_qm = lo + tl.arange(0, BLOCK_M) | |
offs_n = start_n * BLOCK_M + tl.arange(0, BLOCK_M) | |
offs_m = tl.arange(0, BLOCK_N) | |
offs_k = tl.arange(0, BLOCK_DMODEL) | |
# initialize pointers to value-like data | |
q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_k[None, :] * stride_qk) | |
k_ptrs = K + (offs_n[:, None] * stride_kn + offs_k[None, :] * stride_kk) | |
v_ptrs = V + (offs_n[:, None] * stride_qm + offs_k[None, :] * stride_qk) | |
do_ptrs = DO + (offs_qm[:, None] * stride_qm + offs_k[None, :] * stride_qk) | |
dq_ptrs = DQ + (offs_qm[:, None] * stride_qm + offs_k[None, :] * stride_qk) | |
# pointer to row-wise quantities in value-like data | |
D_ptrs = D + off_hz * N_CTX | |
m_ptrs = M + off_hz * N_CTX | |
# initialize dv amd dk | |
dv = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) | |
dk = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32) | |
# k and v stay in SRAM throughout | |
k = tl.load(k_ptrs) | |
v = tl.load(v_ptrs) | |
# loop over rows | |
for start_m in range(lo, num_block * BLOCK_M, BLOCK_M): | |
offs_m_curr = start_m + offs_m | |
# load q, k, v, do on-chip | |
q = tl.load(q_ptrs) | |
# recompute p = softmax(qk, dim=-1).T | |
# NOTE: `do` is pre-divided by `l`; no normalization here | |
qk = tl.dot(q, k, trans_b=True) | |
qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), qk, float("-inf")) | |
m = tl.load(m_ptrs + offs_m_curr) | |
p = tl.exp(qk * sm_scale - m[:, None]) | |
# compute dv | |
do = tl.load(do_ptrs) | |
dv += tl.dot(p.to(do.dtype), do, trans_a=True) | |
# compute dp = dot(v, do) | |
Di = tl.load(D_ptrs + offs_m_curr) | |
dp = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) - Di[:, None] | |
dp += tl.dot(do, v, trans_b=True) | |
# compute ds = p * (dp - delta[:, None]) | |
ds = p * dp * sm_scale | |
# compute dk = dot(ds.T, q) | |
dk += tl.dot(ds.to(q.dtype), q, trans_a=True) | |
# # compute dq | |
dq = tl.load(dq_ptrs, eviction_policy="evict_last") | |
dq += tl.dot(ds.to(k.dtype), k) | |
tl.store(dq_ptrs, dq, eviction_policy="evict_last") | |
# # increment pointers | |
dq_ptrs += BLOCK_M * stride_qm | |
q_ptrs += BLOCK_M * stride_qm | |
do_ptrs += BLOCK_M * stride_qm | |
# write-back | |
dv_ptrs = DV + (offs_n[:, None] * stride_qm + offs_k[None, :] * stride_qk) | |
dk_ptrs = DK + (offs_n[:, None] * stride_kn + offs_k[None, :] * stride_kk) | |
tl.store(dv_ptrs, dv) | |
tl.store(dk_ptrs, dk) | |
class _attention(torch.autograd.Function): | |
def forward(ctx, q, k, v, sm_scale): | |
BLOCK = 128 | |
# shape constraints | |
Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1] | |
assert Lq == Lk and Lk == Lv | |
assert Lk in {16, 32, 64, 128} | |
o = torch.empty_like(q) | |
grid = (triton.cdiv(q.shape[2], BLOCK), q.shape[0] * q.shape[1]) | |
tmp = torch.empty( | |
(q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32 | |
) | |
L = torch.empty((q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) | |
m = torch.empty((q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32) | |
num_warps = 4 if Lk <= 64 else 8 | |
_fwd_kernel[grid]( | |
q, | |
k, | |
v, | |
sm_scale, | |
tmp, | |
L, | |
m, | |
o, | |
q.stride(0), | |
q.stride(1), | |
q.stride(2), | |
q.stride(3), | |
k.stride(0), | |
k.stride(1), | |
k.stride(2), | |
k.stride(3), | |
v.stride(0), | |
v.stride(1), | |
v.stride(2), | |
v.stride(3), | |
o.stride(0), | |
o.stride(1), | |
o.stride(2), | |
o.stride(3), | |
q.shape[0], | |
q.shape[1], | |
q.shape[2], | |
BLOCK_M=BLOCK, | |
BLOCK_N=BLOCK, | |
BLOCK_DMODEL=Lk, | |
num_warps=num_warps, | |
num_stages=1, | |
) | |
ctx.save_for_backward(q, k, v, o, L, m) | |
ctx.BLOCK = BLOCK | |
ctx.grid = grid | |
ctx.sm_scale = sm_scale | |
ctx.BLOCK_DMODEL = Lk | |
return o | |
def backward(ctx, do): | |
q, k, v, o, l, m = ctx.saved_tensors | |
do = do.contiguous() | |
dq = torch.zeros_like(q, dtype=torch.float32) | |
dk = torch.empty_like(k) | |
dv = torch.empty_like(v) | |
do_scaled = torch.empty_like(do) | |
delta = torch.empty_like(l) | |
_bwd_preprocess[(ctx.grid[0] * ctx.grid[1],)]( | |
o, | |
do, | |
l, | |
do_scaled, | |
delta, | |
BLOCK_M=ctx.BLOCK, | |
D_HEAD=ctx.BLOCK_DMODEL, | |
) | |
# NOTE: kernel currently buggy for other values of `num_warps` | |
num_warps = 8 | |
_bwd_kernel[(ctx.grid[1],)]( | |
q, | |
k, | |
v, | |
ctx.sm_scale, | |
o, | |
do_scaled, | |
dq, | |
dk, | |
dv, | |
l, | |
m, | |
delta, | |
q.stride(0), | |
q.stride(1), | |
q.stride(2), | |
q.stride(3), | |
k.stride(0), | |
k.stride(1), | |
k.stride(2), | |
k.stride(3), | |
v.stride(0), | |
v.stride(1), | |
v.stride(2), | |
v.stride(3), | |
q.shape[0], | |
q.shape[1], | |
q.shape[2], | |
ctx.grid[0], | |
BLOCK_M=ctx.BLOCK, | |
BLOCK_N=ctx.BLOCK, | |
BLOCK_DMODEL=ctx.BLOCK_DMODEL, | |
num_warps=num_warps, | |
num_stages=1, | |
) | |
return dq.to(q.dtype), dk, dv, None | |
attention = _attention.apply | |