Spaces:
Sleeping
Sleeping
""" | |
*Experimental* implementation of FlashAttention in Triton. | |
Tested with triton==2.0.0.dev20221202. | |
Triton 2.0 has a new backend (MLIR) but seems like it doesn't yet work for head dimensions | |
other than 64: | |
https://github.com/openai/triton/blob/d376020f90002757eea3ea9475d4f7cfc2ec5ead/python/triton/ops/flash_attention.py#L207 | |
We'll update this implementation with the new Triton backend once this is fixed. | |
We use the FlashAttention implementation from Phil Tillet a starting point. | |
https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py | |
Changes: | |
- Implement both causal and non-causal attention. | |
- Implement both self-attention and cross-attention. | |
- Support arbitrary seqlens (not just multiples of 128), for both forward and backward. | |
- Support all head dimensions up to 128 (not just 16, 32, 64, 128), for both forward and backward. | |
- Support attention bias. | |
- Speed up the forward pass a bit, and only store the LSE instead of m and l. | |
- Make the backward for d=128 much faster by reducing register spilling. | |
- Optionally parallelize the backward pass across seqlen_k, to deal with the case of | |
small batch size * nheads. | |
Caution: | |
- This is an *experimental* implementation. The forward pass should be quite robust but | |
I'm not 100% sure that the backward pass doesn't have race conditions (due to the Triton compiler). | |
- This implementation has only been tested on A100. | |
- If you plan to use headdim other than 64 and 128, you should test for race conditions | |
(due to the Triton compiler), as done in tests/test_flash_attn.py | |
"test_flash_attn_triton_race_condition". I've tested and fixed many race conditions | |
for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident | |
that there are none left for other head dimensions. | |
Differences between this Triton version and the CUDA version: | |
- Triton version doesn't support dropout. | |
- Triton forward is generally faster than CUDA forward, while Triton backward is | |
generally slower than CUDA backward. Overall Triton forward + backward is slightly slower | |
than CUDA forward + backward. | |
- Triton version doesn't support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor). | |
- Triton version supports attention bias, while CUDA version doesn't. | |
""" | |
import math | |
import torch | |
import triton | |
import triton.language as tl | |
# Disabling autotune for now, set num_warps=4 if headdim=64 and num_warps=8 if headdim=128 | |
# @triton.autotune( | |
# configs=[ | |
# triton.Config({"BLOCK_M": 128, "BLOCK_N": 128}, num_warps=4, num_stages=1), | |
# # This config has a race condition when EVEN_M == False, disabling it for now. | |
# # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64}, num_warps=4, num_stages=1), | |
# ], | |
# key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM'] | |
# ) | |
def _fwd_kernel( | |
Q, | |
K, | |
V, | |
Bias, | |
Out, | |
Lse, | |
TMP, # NOTE: TMP is a scratchpad buffer to workaround a compiler bug | |
softmax_scale, | |
stride_qb, | |
stride_qh, | |
stride_qm, | |
stride_kb, | |
stride_kh, | |
stride_kn, | |
stride_vb, | |
stride_vh, | |
stride_vn, | |
stride_bb, | |
stride_bh, | |
stride_bm, | |
stride_ob, | |
stride_oh, | |
stride_om, | |
nheads, | |
seqlen_q, | |
seqlen_k, | |
seqlen_q_rounded, | |
headdim, | |
CACHE_KEY_SEQLEN_Q, | |
CACHE_KEY_SEQLEN_K, | |
BIAS_TYPE: tl.constexpr, | |
IS_CAUSAL: tl.constexpr, | |
BLOCK_HEADDIM: tl.constexpr, | |
EVEN_M: tl.constexpr, | |
EVEN_N: tl.constexpr, | |
EVEN_HEADDIM: tl.constexpr, | |
BLOCK_M: tl.constexpr, | |
BLOCK_N: tl.constexpr, | |
): | |
start_m = tl.program_id(0) | |
off_hb = tl.program_id(1) | |
off_b = off_hb // nheads | |
off_h = off_hb % nheads | |
# off_b = tl.program_id(1) | |
# off_h = tl.program_id(2) | |
# off_hb = off_b * nheads + off_h | |
# initialize offsets | |
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) | |
offs_n = tl.arange(0, BLOCK_N) | |
offs_d = tl.arange(0, BLOCK_HEADDIM) | |
# Initialize pointers to Q, K, V | |
# Adding parenthesis around indexing might use int32 math instead of int64 math? | |
# https://github.com/openai/triton/issues/741 | |
# I'm seeing a tiny bit of difference (5-7us) | |
q_ptrs = ( | |
Q + off_b * stride_qb + off_h * stride_qh + (offs_m[:, None] * stride_qm + offs_d[None, :]) | |
) | |
k_ptrs = ( | |
K + off_b * stride_kb + off_h * stride_kh + (offs_n[:, None] * stride_kn + offs_d[None, :]) | |
) | |
v_ptrs = ( | |
V + off_b * stride_vb + off_h * stride_vh + (offs_n[:, None] * stride_vn + offs_d[None, :]) | |
) | |
if BIAS_TYPE == "vector": | |
b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n | |
elif BIAS_TYPE == "matrix": | |
b_ptrs = ( | |
Bias | |
+ off_b * stride_bb | |
+ off_h * stride_bh | |
+ (offs_m[:, None] * stride_bm + offs_n[None, :]) | |
) | |
# initialize pointer to m and l | |
t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m | |
lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") | |
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf") | |
acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32) | |
# load q: it will stay in SRAM throughout | |
# [2022-10-30] TD: Triton bug - in the case of EVEN_M=True and EVEN_N=False, if we just call | |
# tl.load(q_ptrs), we get the wrong output! | |
if EVEN_M & EVEN_N: | |
if EVEN_HEADDIM: | |
q = tl.load(q_ptrs) | |
else: | |
q = tl.load(q_ptrs, mask=offs_d[None, :] < headdim, other=0.0) | |
else: | |
if EVEN_HEADDIM: | |
q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0) | |
else: | |
q = tl.load( | |
q_ptrs, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0 | |
) | |
# loop over k, v and update accumulator | |
end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k) | |
for start_n in range(0, end_n, BLOCK_N): | |
start_n = tl.multiple_of(start_n, BLOCK_N) | |
# -- compute qk ---- | |
if EVEN_N & EVEN_M: # If we just do "if EVEN_N", there seems to be some race condition | |
if EVEN_HEADDIM: | |
k = tl.load(k_ptrs + start_n * stride_kn) | |
else: | |
k = tl.load(k_ptrs + start_n * stride_kn, mask=offs_d[None, :] < headdim, other=0.0) | |
else: | |
if EVEN_HEADDIM: | |
k = tl.load( | |
k_ptrs + start_n * stride_kn, | |
mask=(start_n + offs_n)[:, None] < seqlen_k, | |
other=0.0, | |
) | |
else: | |
k = tl.load( | |
k_ptrs + start_n * stride_kn, | |
mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), | |
other=0.0, | |
) | |
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) | |
qk += tl.dot(q, k, trans_b=True) | |
# Trying to combine the two masks seem to make the result wrong | |
if not EVEN_N: # Need to mask out otherwise the softmax is wrong | |
qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float("-inf")) | |
if IS_CAUSAL: | |
qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float("-inf")) | |
if BIAS_TYPE != "none": | |
if BIAS_TYPE == "vector": | |
if EVEN_N: | |
bias = tl.load(b_ptrs + start_n).to(tl.float32) | |
else: | |
bias = tl.load( | |
b_ptrs + start_n, mask=(start_n + offs_n) < seqlen_k, other=0.0 | |
).to(tl.float32) | |
bias = bias[None, :] | |
elif BIAS_TYPE == "matrix": | |
if EVEN_M & EVEN_N: | |
bias = tl.load(b_ptrs + start_n).to(tl.float32) | |
else: | |
bias = tl.load( | |
b_ptrs + start_n, | |
mask=(offs_m[:, None] < seqlen_q) | |
& ((start_n + offs_n)[None, :] < seqlen_k), | |
other=0.0, | |
).to(tl.float32) | |
# Slightly faster to multiply the softmax_scale in the tl.exp below since the compiler | |
# can then fuse the mult and add into an fma instruction. But if we have bias we need to | |
# to multiply with softmax_scale here. | |
qk = qk * softmax_scale + bias | |
m_ij = tl.maximum(tl.max(qk, 1), lse_i) | |
p = tl.exp(qk - m_ij[:, None]) | |
else: | |
m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i) | |
p = tl.exp(qk * softmax_scale - m_ij[:, None]) | |
l_ij = tl.sum(p, 1) | |
# scale acc_o | |
acc_o_scale = tl.exp(m_i - m_ij) | |
# # -- update output accumulator -- | |
# BUG: have to store and immediately load | |
tl.store(t_ptrs, acc_o_scale) | |
acc_o_scale = tl.load(t_ptrs) | |
acc_o = acc_o * acc_o_scale[:, None] | |
# update acc_o | |
if EVEN_N & EVEN_M: # If we just do "if EVEN_N", there seems to be some race condition | |
if EVEN_HEADDIM: | |
v = tl.load(v_ptrs + start_n * stride_vn) | |
else: | |
v = tl.load(v_ptrs + start_n * stride_vn, mask=offs_d[None, :] < headdim, other=0.0) | |
else: | |
if EVEN_HEADDIM: | |
v = tl.load( | |
v_ptrs + start_n * stride_vn, | |
mask=(start_n + offs_n)[:, None] < seqlen_k, | |
other=0.0, | |
) | |
else: | |
v = tl.load( | |
v_ptrs + start_n * stride_vn, | |
mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), | |
other=0.0, | |
) | |
p = p.to(v.dtype) | |
acc_o += tl.dot(p, v) | |
# -- update statistics | |
m_i = m_ij | |
l_i_new = tl.exp(lse_i - m_ij) + l_ij | |
lse_i = m_ij + tl.log(l_i_new) | |
o_scale = tl.exp(m_i - lse_i) | |
# BUG: have to store and immediately load | |
tl.store(t_ptrs, o_scale) | |
o_scale = tl.load(t_ptrs) | |
acc_o = acc_o * o_scale[:, None] | |
# rematerialize offsets to save registers | |
start_m = tl.program_id(0) | |
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) | |
# write back l and m | |
lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m | |
tl.store(lse_ptrs, lse_i) | |
# initialize pointers to output | |
offs_d = tl.arange(0, BLOCK_HEADDIM) | |
out_ptrs = ( | |
Out | |
+ off_b * stride_ob | |
+ off_h * stride_oh | |
+ (offs_m[:, None] * stride_om + offs_d[None, :]) | |
) | |
if EVEN_M: | |
if EVEN_HEADDIM: | |
tl.store(out_ptrs, acc_o) | |
else: | |
tl.store(out_ptrs, acc_o, mask=offs_d[None, :] < headdim) | |
else: | |
if EVEN_HEADDIM: | |
tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q) | |
else: | |
tl.store( | |
out_ptrs, acc_o, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim) | |
) | |
def _bwd_preprocess_do_o_dot( | |
Out, | |
DO, | |
Delta, | |
stride_ob, | |
stride_oh, | |
stride_om, | |
stride_dob, | |
stride_doh, | |
stride_dom, | |
nheads, | |
seqlen_q, | |
seqlen_q_rounded, | |
headdim, | |
BLOCK_M: tl.constexpr, | |
BLOCK_HEADDIM: tl.constexpr, | |
): | |
start_m = tl.program_id(0) | |
off_hb = tl.program_id(1) | |
off_b = off_hb // nheads | |
off_h = off_hb % nheads | |
# initialize offsets | |
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) | |
offs_d = tl.arange(0, BLOCK_HEADDIM) | |
# load | |
o = tl.load( | |
Out + off_b * stride_ob + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :], | |
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), | |
other=0.0, | |
).to(tl.float32) | |
do = tl.load( | |
DO | |
+ off_b * stride_dob | |
+ off_h * stride_doh | |
+ offs_m[:, None] * stride_dom | |
+ offs_d[None, :], | |
mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), | |
other=0.0, | |
).to(tl.float32) | |
delta = tl.sum(o * do, axis=1) | |
# write-back | |
tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta) | |
def _bwd_store_dk_dv( | |
dk_ptrs, | |
dv_ptrs, | |
dk, | |
dv, | |
offs_n, | |
offs_d, | |
seqlen_k, | |
headdim, | |
EVEN_M: tl.constexpr, | |
EVEN_N: tl.constexpr, | |
EVEN_HEADDIM: tl.constexpr, | |
): | |
# [2022-11-01] TD: Same bug. In the case of EVEN_N=True and EVEN_M=False, | |
# if we just call tl.store(dv_ptrs), there's a race condition | |
if EVEN_N & EVEN_M: | |
if EVEN_HEADDIM: | |
tl.store(dv_ptrs, dv) | |
tl.store(dk_ptrs, dk) | |
else: | |
tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim) | |
tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim) | |
else: | |
if EVEN_HEADDIM: | |
tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k) | |
tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k) | |
else: | |
tl.store(dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim)) | |
tl.store(dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim)) | |
def _bwd_kernel_one_col_block( | |
start_n, | |
Q, | |
K, | |
V, | |
Bias, | |
DO, | |
DQ, | |
DK, | |
DV, | |
LSE, | |
D, | |
softmax_scale, | |
stride_qm, | |
stride_kn, | |
stride_vn, | |
stride_bm, | |
stride_dom, | |
stride_dqm, | |
stride_dkn, | |
stride_dvn, | |
seqlen_q, | |
seqlen_k, | |
headdim, | |
ATOMIC_ADD: tl.constexpr, | |
BIAS_TYPE: tl.constexpr, | |
IS_CAUSAL: tl.constexpr, | |
BLOCK_HEADDIM: tl.constexpr, | |
EVEN_M: tl.constexpr, | |
EVEN_N: tl.constexpr, | |
EVEN_HEADDIM: tl.constexpr, | |
BLOCK_M: tl.constexpr, | |
BLOCK_N: tl.constexpr, | |
): | |
# We need to make sure begin_m is a multiple of BLOCK_M (not BLOCK_N) | |
begin_m = 0 if not IS_CAUSAL else ((start_n * BLOCK_N) // BLOCK_M) * BLOCK_M | |
# initialize row/col offsets | |
offs_qm = begin_m + tl.arange(0, BLOCK_M) | |
offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N) | |
offs_m = tl.arange(0, BLOCK_M) | |
offs_d = tl.arange(0, BLOCK_HEADDIM) | |
# initialize pointers to value-like data | |
q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_d[None, :]) | |
k_ptrs = K + (offs_n[:, None] * stride_kn + offs_d[None, :]) | |
v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :]) | |
do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_d[None, :]) | |
dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_d[None, :]) | |
if BIAS_TYPE == "vector": | |
b_ptrs = Bias + offs_n | |
elif BIAS_TYPE == "matrix": | |
b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :]) | |
# initialize dv and dk | |
dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32) | |
dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32) | |
# There seems to be some problem with Triton pipelining that makes results wrong for | |
# headdim=64, seqlen=(113, 255), bias_type='matrix'. In this case the for loop | |
# may have zero step, and pipelining with the bias matrix could screw it up. | |
# So we just exit early. | |
if begin_m >= seqlen_q: | |
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :]) | |
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :]) | |
_bwd_store_dk_dv( | |
dk_ptrs, | |
dv_ptrs, | |
dk, | |
dv, | |
offs_n, | |
offs_d, | |
seqlen_k, | |
headdim, | |
EVEN_M=EVEN_M, | |
EVEN_N=EVEN_N, | |
EVEN_HEADDIM=EVEN_HEADDIM, | |
) | |
return | |
# k and v stay in SRAM throughout | |
# [2022-10-30] TD: Same bug as the fwd. In the case of EVEN_N=True and EVEN_M=False, | |
# if we just call tl.load(k_ptrs), we get the wrong output! | |
if EVEN_N & EVEN_M: | |
if EVEN_HEADDIM: | |
k = tl.load(k_ptrs) | |
v = tl.load(v_ptrs) | |
else: | |
k = tl.load(k_ptrs, mask=offs_d[None, :] < headdim, other=0.0) | |
v = tl.load(v_ptrs, mask=offs_d[None, :] < headdim, other=0.0) | |
else: | |
if EVEN_HEADDIM: | |
k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0) | |
v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0) | |
else: | |
k = tl.load( | |
k_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0 | |
) | |
v = tl.load( | |
v_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0 | |
) | |
# loop over rows | |
num_block_m = tl.cdiv(seqlen_q, BLOCK_M) | |
for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M): | |
start_m = tl.multiple_of(start_m, BLOCK_M) | |
offs_m_curr = start_m + offs_m | |
# load q, k, v, do on-chip | |
# Same bug as below. Otherwise gives wrong result for headdim=40, seqlen=(128, 117) | |
if EVEN_M & EVEN_HEADDIM: | |
q = tl.load(q_ptrs) | |
else: | |
if EVEN_HEADDIM: | |
q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0) | |
else: | |
q = tl.load( | |
q_ptrs, | |
mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), | |
other=0.0, | |
) | |
# recompute p = softmax(qk, dim=-1).T | |
qk = tl.dot(q, k, trans_b=True) | |
# Trying to combine the two masks seem to make the result wrong | |
if not EVEN_N: # Need to mask out otherwise the softmax is wrong | |
qk = tl.where(offs_n[None, :] < seqlen_k, qk, float("-inf")) | |
if IS_CAUSAL: | |
qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), qk, float("-inf")) | |
if BIAS_TYPE != "none": | |
tl.debug_barrier() # Race condition otherwise | |
if BIAS_TYPE == "vector": | |
if EVEN_N: | |
bias = tl.load(b_ptrs).to(tl.float32) | |
else: | |
bias = tl.load(b_ptrs, mask=offs_n < seqlen_k, other=0.0).to(tl.float32) | |
bias = bias[None, :] | |
elif BIAS_TYPE == "matrix": | |
if EVEN_M & EVEN_N: | |
bias = tl.load(b_ptrs).to(tl.float32) | |
else: | |
bias = tl.load( | |
b_ptrs, | |
mask=(offs_m_curr[:, None] < seqlen_q) & (offs_n[None, :] < seqlen_k), | |
other=0.0, | |
).to(tl.float32) | |
qk = qk * softmax_scale + bias | |
# There seems to be a race condition when headdim=48/96, and dq, dk, dv are wrong. | |
# Also wrong for headdim=64. | |
if not (EVEN_M & EVEN_HEADDIM): | |
tl.debug_barrier() | |
lse_i = tl.load(LSE + offs_m_curr) | |
if BIAS_TYPE == "none": | |
p = tl.exp(qk * softmax_scale - lse_i[:, None]) | |
else: | |
p = tl.exp(qk - lse_i[:, None]) | |
# compute dv | |
# [2022-10-30] TD: A Triton bug: if EVEN_M=True and EVEN_HEADDIM=False, if we call | |
# do = tl.load(do_ptrs, mask=offs_d[None, :] < headdim, other=0.0), we get wrong outputs | |
# in the case of headdim=48/96, seqlen_q & seqlen_k >= 512. If headdim=40 or seqlen < 512, | |
# the output is correct. | |
if EVEN_M & EVEN_HEADDIM: | |
do = tl.load(do_ptrs) | |
else: | |
# [2022-11-01] TD: Triton bug, there's a race condition if we just use m_mask and not d_mask. | |
do = tl.load( | |
do_ptrs, | |
mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), | |
other=0.0, | |
) | |
# if EVEN_M: | |
# if EVEN_HEADDIM: | |
# do = tl.load(do_ptrs) | |
# else: | |
# do = tl.load(do_ptrs, mask=offs_d[None, :] < headdim, other=0.0) | |
# else: | |
# if EVEN_HEADDIM: | |
# do = tl.load(do_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0) | |
# else: | |
# do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) | |
# & (offs_d[None, :] < headdim), other=0.0) | |
dv += tl.dot(p.to(do.dtype), do, trans_a=True) | |
# compute dp = dot(v, do) | |
# There seems to be a race condition when headdim=48/96, and dq, dk are wrong. | |
# Also wrong for headdim=128, seqlen=(108, 256), and ATOMIC_ADD=True | |
# Also wrong for headdim=64, seqlen=(1023, 1024), and ATOMIC_ADD=False | |
if not (EVEN_M & EVEN_HEADDIM): | |
tl.debug_barrier() | |
dp = tl.dot(do, v, trans_b=True) | |
# There's a race condition for headdim=48 | |
if not EVEN_HEADDIM: | |
tl.debug_barrier() | |
# compute ds = p * (dp - delta[:, None]) | |
# Putting the subtraction after the dp matmul (instead of before) is slightly faster | |
Di = tl.load(D + offs_m_curr) | |
# Converting ds to q.dtype here reduces register pressure and makes it much faster | |
# for BLOCK_HEADDIM=128 | |
ds = (p * (dp - Di[:, None]) * softmax_scale).to(q.dtype) | |
# compute dk = dot(ds.T, q) | |
dk += tl.dot(ds, q, trans_a=True) | |
# compute dq | |
if not ( | |
EVEN_M & EVEN_HEADDIM | |
): # Otherewise there's a race condition when BIAS_TYPE='matrix' | |
tl.debug_barrier() | |
if not ATOMIC_ADD: | |
if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M | |
dq = tl.load(dq_ptrs, eviction_policy="evict_last") | |
dq += tl.dot(ds, k) | |
tl.store(dq_ptrs, dq, eviction_policy="evict_last") | |
else: | |
if EVEN_HEADDIM: | |
dq = tl.load( | |
dq_ptrs, | |
mask=offs_m_curr[:, None] < seqlen_q, | |
other=0.0, | |
eviction_policy="evict_last", | |
) | |
dq += tl.dot(ds, k) | |
tl.store( | |
dq_ptrs, | |
dq, | |
mask=offs_m_curr[:, None] < seqlen_q, | |
eviction_policy="evict_last", | |
) | |
else: | |
dq = tl.load( | |
dq_ptrs, | |
mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), | |
other=0.0, | |
eviction_policy="evict_last", | |
) | |
dq += tl.dot(ds, k) | |
tl.store( | |
dq_ptrs, | |
dq, | |
mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), | |
eviction_policy="evict_last", | |
) | |
else: # If we're parallelizing across the seqlen_k dimension | |
dq = tl.dot(ds, k) | |
if EVEN_M & EVEN_HEADDIM: # Race condition if we just do EVEN_M | |
tl.atomic_add(dq_ptrs, dq) | |
else: | |
if EVEN_HEADDIM: | |
tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q) | |
else: | |
tl.atomic_add( | |
dq_ptrs, | |
dq, | |
mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), | |
) | |
# increment pointers | |
dq_ptrs += BLOCK_M * stride_dqm | |
q_ptrs += BLOCK_M * stride_qm | |
do_ptrs += BLOCK_M * stride_dom | |
if BIAS_TYPE == "matrix": | |
b_ptrs += BLOCK_M * stride_bm | |
# write-back | |
dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :]) | |
dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :]) | |
_bwd_store_dk_dv( | |
dk_ptrs, | |
dv_ptrs, | |
dk, | |
dv, | |
offs_n, | |
offs_d, | |
seqlen_k, | |
headdim, | |
EVEN_M=EVEN_M, | |
EVEN_N=EVEN_N, | |
EVEN_HEADDIM=EVEN_HEADDIM, | |
) | |
def init_to_zero(name): | |
return lambda nargs: nargs[name].zero_() | |
def _bwd_kernel( | |
Q, | |
K, | |
V, | |
Bias, | |
DO, | |
DQ, | |
DK, | |
DV, | |
LSE, | |
D, | |
softmax_scale, | |
stride_qb, | |
stride_qh, | |
stride_qm, | |
stride_kb, | |
stride_kh, | |
stride_kn, | |
stride_vb, | |
stride_vh, | |
stride_vn, | |
stride_bb, | |
stride_bh, | |
stride_bm, | |
stride_dob, | |
stride_doh, | |
stride_dom, | |
stride_dqb, | |
stride_dqh, | |
stride_dqm, | |
stride_dkb, | |
stride_dkh, | |
stride_dkn, | |
stride_dvb, | |
stride_dvh, | |
stride_dvn, | |
nheads, | |
seqlen_q, | |
seqlen_k, | |
seqlen_q_rounded, | |
headdim, | |
CACHE_KEY_SEQLEN_Q, | |
CACHE_KEY_SEQLEN_K, | |
BIAS_TYPE: tl.constexpr, | |
IS_CAUSAL: tl.constexpr, | |
BLOCK_HEADDIM: tl.constexpr, | |
SEQUENCE_PARALLEL: tl.constexpr, | |
EVEN_M: tl.constexpr, | |
EVEN_N: tl.constexpr, | |
EVEN_HEADDIM: tl.constexpr, | |
BLOCK_M: tl.constexpr, | |
BLOCK_N: tl.constexpr, | |
): | |
off_hb = tl.program_id(1) | |
off_b = off_hb // nheads | |
off_h = off_hb % nheads | |
# offset pointers for batch/head | |
Q += off_b * stride_qb + off_h * stride_qh | |
K += off_b * stride_kb + off_h * stride_kh | |
V += off_b * stride_vb + off_h * stride_vh | |
DO += off_b * stride_dob + off_h * stride_doh | |
DQ += off_b * stride_dqb + off_h * stride_dqh | |
DK += off_b * stride_dkb + off_h * stride_dkh | |
DV += off_b * stride_dvb + off_h * stride_dvh | |
if BIAS_TYPE != "none": | |
Bias += off_b * stride_bb + off_h * stride_bh | |
# pointer to row-wise quantities in value-like data | |
D += off_hb * seqlen_q_rounded | |
LSE += off_hb * seqlen_q_rounded | |
if not SEQUENCE_PARALLEL: | |
num_block_n = tl.cdiv(seqlen_k, BLOCK_N) | |
for start_n in range(0, num_block_n): | |
_bwd_kernel_one_col_block( | |
start_n, | |
Q, | |
K, | |
V, | |
Bias, | |
DO, | |
DQ, | |
DK, | |
DV, | |
LSE, | |
D, | |
softmax_scale, | |
stride_qm, | |
stride_kn, | |
stride_vn, | |
stride_bm, | |
stride_dom, | |
stride_dqm, | |
stride_dkn, | |
stride_dvn, | |
seqlen_q, | |
seqlen_k, | |
headdim, | |
ATOMIC_ADD=False, | |
BIAS_TYPE=BIAS_TYPE, | |
IS_CAUSAL=IS_CAUSAL, | |
BLOCK_HEADDIM=BLOCK_HEADDIM, | |
EVEN_M=EVEN_M, | |
EVEN_N=EVEN_N, | |
EVEN_HEADDIM=EVEN_HEADDIM, | |
BLOCK_M=BLOCK_M, | |
BLOCK_N=BLOCK_N, | |
) | |
else: | |
start_n = tl.program_id(0) | |
_bwd_kernel_one_col_block( | |
start_n, | |
Q, | |
K, | |
V, | |
Bias, | |
DO, | |
DQ, | |
DK, | |
DV, | |
LSE, | |
D, | |
softmax_scale, | |
stride_qm, | |
stride_kn, | |
stride_vn, | |
stride_bm, | |
stride_dom, | |
stride_dqm, | |
stride_dkn, | |
stride_dvn, | |
seqlen_q, | |
seqlen_k, | |
headdim, | |
ATOMIC_ADD=True, | |
BIAS_TYPE=BIAS_TYPE, | |
IS_CAUSAL=IS_CAUSAL, | |
BLOCK_HEADDIM=BLOCK_HEADDIM, | |
EVEN_M=EVEN_M, | |
EVEN_N=EVEN_N, | |
EVEN_HEADDIM=EVEN_HEADDIM, | |
BLOCK_M=BLOCK_M, | |
BLOCK_N=BLOCK_N, | |
) | |
def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None): | |
# shape constraints | |
batch, seqlen_q, nheads, d = q.shape | |
_, seqlen_k, _, _ = k.shape | |
assert k.shape == (batch, seqlen_k, nheads, d) | |
assert v.shape == (batch, seqlen_k, nheads, d) | |
assert d <= 128, "FlashAttention only support head dimensions up to 128" | |
assert q.dtype == k.dtype == v.dtype, "All tensors must have the same type" | |
assert q.dtype in [torch.float16, torch.bfloat16], "Only support fp16 and bf16" | |
assert q.is_cuda and k.is_cuda and v.is_cuda | |
softmax_scale = softmax_scale or 1.0 / math.sqrt(d) | |
has_bias = bias is not None | |
bias_type = "none" | |
if has_bias: | |
assert bias.dtype in [q.dtype, torch.float] | |
assert bias.is_cuda | |
assert bias.dim() == 4 | |
if bias.stride(-1) != 1: | |
bias = bias.contiguous() | |
if bias.shape[2:] == (1, seqlen_k): | |
bias_type = "vector" | |
elif bias.shape[2:] == (seqlen_q, seqlen_k): | |
bias_type = "matrix" | |
else: | |
raise RuntimeError( | |
"Last 2 dimensions of bias must be (1, seqlen_k)" " or (seqlen_q, seqlen_k)" | |
) | |
bias = bias.expand(batch, nheads, seqlen_q, seqlen_k) | |
bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0) | |
seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128 | |
lse = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32) | |
tmp = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32) | |
o = torch.empty_like(q) | |
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16) | |
BLOCK = 128 | |
num_warps = 4 if d <= 64 else 8 | |
grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads) | |
_fwd_kernel[grid]( | |
q, | |
k, | |
v, | |
bias, | |
o, | |
lse, | |
tmp, | |
softmax_scale, | |
q.stride(0), | |
q.stride(2), | |
q.stride(1), | |
k.stride(0), | |
k.stride(2), | |
k.stride(1), | |
v.stride(0), | |
v.stride(2), | |
v.stride(1), | |
*bias_strides, | |
o.stride(0), | |
o.stride(2), | |
o.stride(1), | |
nheads, | |
seqlen_q, | |
seqlen_k, | |
seqlen_q_rounded, | |
d, | |
seqlen_q // 32, | |
seqlen_k // 32, # key for triton cache (limit number of compilations) | |
# Can't use kwargs here because triton autotune expects key to be args, not kwargs | |
# IS_CAUSAL=causal, BLOCK_HEADDIM=d, | |
bias_type, | |
causal, | |
BLOCK_HEADDIM, | |
BLOCK_M=BLOCK, | |
BLOCK_N=BLOCK, | |
num_warps=num_warps, | |
num_stages=1, | |
) | |
return o, lse, softmax_scale # softmax_scale could have been updated | |
def _flash_attn_backward( | |
do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=False, softmax_scale=None | |
): | |
# Make sure that the last dimension is contiguous | |
if do.stride(-1) != 1: | |
do = do.contiguous() | |
batch, seqlen_q, nheads, d = q.shape | |
_, seqlen_k, _, _ = k.shape | |
# assert d in {16, 32, 64, 128} | |
assert d <= 128 | |
seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128 | |
assert lse.shape == (batch, nheads, seqlen_q_rounded) | |
assert q.stride(-1) == k.stride(-1) == v.stride(-1) == o.stride(-1) == 1 | |
assert dq.stride(-1) == dk.stride(-1) == dv.stride(-1) == 1 | |
softmax_scale = softmax_scale or 1.0 / math.sqrt(d) | |
# dq_accum = torch.zeros_like(q, dtype=torch.float32) | |
dq_accum = torch.empty_like(q, dtype=torch.float32) | |
delta = torch.empty_like(lse) | |
# delta = torch.zeros_like(lse) | |
BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16) | |
grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads) | |
_bwd_preprocess_do_o_dot[grid]( | |
o, | |
do, | |
delta, | |
o.stride(0), | |
o.stride(2), | |
o.stride(1), | |
do.stride(0), | |
do.stride(2), | |
do.stride(1), | |
nheads, | |
seqlen_q, | |
seqlen_q_rounded, | |
d, | |
BLOCK_M=128, | |
BLOCK_HEADDIM=BLOCK_HEADDIM, | |
) | |
has_bias = bias is not None | |
bias_type = "none" | |
if has_bias: | |
assert bias.dtype in [q.dtype, torch.float] | |
assert bias.is_cuda | |
assert bias.dim() == 4 | |
assert bias.stride(-1) == 1 | |
if bias.shape[2:] == (1, seqlen_k): | |
bias_type = "vector" | |
elif bias.shape[2:] == (seqlen_q, seqlen_k): | |
bias_type = "matrix" | |
else: | |
raise RuntimeError( | |
"Last 2 dimensions of bias must be (1, seqlen_k)" " or (seqlen_q, seqlen_k)" | |
) | |
bias = bias.expand(batch, nheads, seqlen_q, seqlen_k) | |
bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0) | |
# BLOCK_M = 128 | |
# BLOCK_N = 64 | |
# num_warps = 4 | |
grid = lambda META: ( | |
triton.cdiv(seqlen_k, META["BLOCK_N"]) if META["SEQUENCE_PARALLEL"] else 1, | |
batch * nheads, | |
) | |
_bwd_kernel[grid]( | |
q, | |
k, | |
v, | |
bias, | |
do, | |
dq_accum, | |
dk, | |
dv, | |
lse, | |
delta, | |
softmax_scale, | |
q.stride(0), | |
q.stride(2), | |
q.stride(1), | |
k.stride(0), | |
k.stride(2), | |
k.stride(1), | |
v.stride(0), | |
v.stride(2), | |
v.stride(1), | |
*bias_strides, | |
do.stride(0), | |
do.stride(2), | |
do.stride(1), | |
dq_accum.stride(0), | |
dq_accum.stride(2), | |
dq_accum.stride(1), | |
dk.stride(0), | |
dk.stride(2), | |
dk.stride(1), | |
dv.stride(0), | |
dv.stride(2), | |
dv.stride(1), | |
nheads, | |
seqlen_q, | |
seqlen_k, | |
seqlen_q_rounded, | |
d, | |
seqlen_q // 32, | |
seqlen_k // 32, # key for triton cache (limit number of compilations) | |
# Can't use kwargs here because triton autotune expects key to be args, not kwargs | |
# IS_CAUSAL=causal, BLOCK_HEADDIM=d, | |
bias_type, | |
causal, | |
BLOCK_HEADDIM, | |
# SEQUENCE_PARALLEL=False, | |
# BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N, | |
# num_warps=num_warps, | |
# num_stages=1, | |
) | |
dq.copy_(dq_accum) | |
class FlashAttnQKVPackedFunc(torch.autograd.Function): | |
def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None): | |
""" | |
qkv: (batch, seqlen, 3, nheads, headdim) | |
bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen). | |
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen). | |
ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen) | |
""" | |
# Make sure that the last dimension is contiguous | |
if qkv.stride(-1) != 1: | |
qkv = qkv.contiguous() | |
o, lse, ctx.softmax_scale = _flash_attn_forward( | |
qkv[:, :, 0], | |
qkv[:, :, 1], | |
qkv[:, :, 2], | |
bias=bias, | |
causal=causal, | |
softmax_scale=softmax_scale, | |
) | |
ctx.save_for_backward(qkv, o, lse, bias) | |
ctx.causal = causal | |
return o | |
def backward(ctx, do): | |
qkv, o, lse, bias = ctx.saved_tensors | |
assert not ctx.needs_input_grad[1], "FlashAttention does not support bias gradient yet" | |
# Triton's autotune causes the Tensor._version to change, and so Pytorch autograd | |
# does a memcpy. To avoid this we run in inference_mode, which doesn't track the version. | |
with torch.inference_mode(): | |
dqkv = torch.empty_like(qkv) | |
_flash_attn_backward( | |
do, | |
qkv[:, :, 0], | |
qkv[:, :, 1], | |
qkv[:, :, 2], | |
o, | |
lse, | |
dqkv[:, :, 0], | |
dqkv[:, :, 1], | |
dqkv[:, :, 2], | |
bias=bias, | |
causal=ctx.causal, | |
softmax_scale=ctx.softmax_scale, | |
) | |
return dqkv, None, None, None | |
flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply | |
class FlashAttnKVPackedFunc(torch.autograd.Function): | |
def forward(ctx, q, kv, bias=None, causal=False, softmax_scale=None): | |
""" | |
q: (batch, seqlen_q, nheads, headdim) | |
kv: (batch, seqlen_k, 2, nheads, headdim) | |
bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k). | |
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k). | |
ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k) | |
""" | |
# Make sure that the last dimension is contiguous | |
q, kv = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, kv]] | |
o, lse, ctx.softmax_scale = _flash_attn_forward( | |
q, kv[:, :, 0], kv[:, :, 1], bias=bias, causal=causal, softmax_scale=softmax_scale | |
) | |
ctx.save_for_backward(q, kv, o, lse, bias) | |
ctx.causal = causal | |
return o | |
def backward(ctx, do): | |
q, kv, o, lse, bias = ctx.saved_tensors | |
if len(ctx.needs_input_grad) >= 3: | |
assert not ctx.needs_input_grad[2], "FlashAttention does not support bias gradient yet" | |
# Triton's autotune causes the Tensor._version to change, and so Pytorch autograd | |
# does a memcpy. To avoid this we run in inference_mode, which doesn't track the version. | |
with torch.inference_mode(): | |
dq = torch.empty_like(q) | |
dkv = torch.empty_like(kv) | |
_flash_attn_backward( | |
do, | |
q, | |
kv[:, :, 0], | |
kv[:, :, 1], | |
o, | |
lse, | |
dq, | |
dkv[:, :, 0], | |
dkv[:, :, 1], | |
bias=bias, | |
causal=ctx.causal, | |
softmax_scale=ctx.softmax_scale, | |
) | |
return dq, dkv, None, None, None | |
flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply | |
class FlashAttnFunc(torch.autograd.Function): | |
def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None): | |
""" | |
q: (batch_size, seqlen_q, nheads, headdim) | |
k, v: (batch_size, seqlen_k, nheads, headdim) | |
bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k). | |
For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k). | |
ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k) | |
""" | |
# Make sure that the last dimension is contiguous | |
q, k, v = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]] | |
o, lse, ctx.softmax_scale = _flash_attn_forward( | |
q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale | |
) | |
ctx.save_for_backward(q, k, v, o, lse, bias) | |
ctx.causal = causal | |
return o | |
def backward(ctx, do): | |
q, k, v, o, lse, bias = ctx.saved_tensors | |
assert not ctx.needs_input_grad[3], "FlashAttention does not support bias gradient yet" | |
# Triton's autotune causes the Tensor._version to change, and so Pytorch autograd | |
# does a memcpy. To avoid this we run in inference_mode, which doesn't track the version. | |
with torch.inference_mode(): | |
dq = torch.empty_like(q) | |
dk = torch.empty_like(k) | |
dv = torch.empty_like(v) | |
_flash_attn_backward( | |
do, | |
q, | |
k, | |
v, | |
o, | |
lse, | |
dq, | |
dk, | |
dv, | |
bias=bias, | |
causal=ctx.causal, | |
softmax_scale=ctx.softmax_scale, | |
) | |
return dq, dk, dv, None, None, None | |
flash_attn_func = FlashAttnFunc.apply | |