Do0rMaMu's picture
Upload folder using huggingface_hub
e45d058 verified
#pragma once
#ifdef OLD_GENERATOR_PATH
#include <ATen/CUDAGeneratorImpl.h>
#else
#include <ATen/cuda/CUDAGeneratorImpl.h>
#endif
#include <ATen/cuda/detail/UnpackRaw.cuh> // For at::cuda::philox::unpack
#include <curand_kernel.h>
#include "ln.h"
#include "ln_utils.cuh"
#include "ln_kernel_traits.h"
#include "static_switch.h"
namespace layer_norm {
template<typename Ktraits, bool Is_dropout, bool Has_colscale, bool Has_subset, bool Is_even_cols>
__global__ __launch_bounds__(Ktraits::THREADS_PER_CTA)
void ln_fwd_kernel(FwdParams params) {
enum { ROWS_PER_CTA = Ktraits::ROWS_PER_CTA };
enum { WARPS_N = Ktraits::WARPS_N };
enum { WARPS_M = Ktraits::WARPS_M };
enum { THREADS_PER_ROW = Ktraits::THREADS_PER_ROW };
enum { VEC_COLS_PER_LDG = Ktraits::VEC_COLS_PER_LDG };
enum { BYTES_PER_ROW = Ktraits::BYTES_PER_ROW };
enum { LDGS = Ktraits::LDGS };
enum { NUM_ELTS = Ktraits::NUM_ELTS };
enum { CTAS_PER_ROW = Ktraits::CTAS_PER_ROW };
using input_t = typename Ktraits::input_t;
using residual_t = typename Ktraits::residual_t;
using output_t = typename Ktraits::output_t;
using index_t = typename Ktraits::index_t;
using compute_t = typename Ktraits::compute_t;
using mask_t = typename Ktraits::mask_t;
using Ivec = typename Ktraits::Ivec;
using Rvec = typename Ktraits::Rvec;
using Ovec = typename Ktraits::Ovec;
using Wvec = typename Ktraits::Wvec;
using Cvec = typename Ktraits::Cvec;
using Mvec = typename Ktraits::Mvec;
using Stats = typename Ktraits::Stats;
using stats_t = typename Stats::stats_t;
const bool has_residual = params.residual != nullptr;
const bool save_x = has_residual || Is_dropout || Has_colscale || (params.rowscale != nullptr) || Has_subset || !(std::is_same<input_t, residual_t>::value);
extern __shared__ char smem_[];
const index_t tidx = threadIdx.x;
const index_t bidn = blockIdx.x % CTAS_PER_ROW;
const index_t bidm = blockIdx.x / CTAS_PER_ROW;
const index_t lane = tidx % THREADS_PER_WARP;
const index_t warp = tidx / THREADS_PER_WARP;
const index_t warp_m = warp / WARPS_N;
const index_t warp_n = warp % WARPS_N;
const index_t r = bidm * ROWS_PER_CTA + warp_m;
const index_t c = bidn * THREADS_PER_ROW + warp_n * THREADS_PER_WARP + lane;
Stats stats(params, bidm, bidn, warp_m, warp_n, lane, smem_);
compute_t *mu_ptr = static_cast<compute_t *>(params.mu);
compute_t *rs_ptr = static_cast<compute_t *>(params.rs);
const input_t *rowscale = static_cast<input_t *>(params.rowscale);
const index_t *x0_subset = static_cast<index_t *>(params.x0_subset);
const index_t *z_subset = static_cast<index_t *>(params.z_subset);
// https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/cuda/Dropout.cu
curandStatePhilox4_32_10_t state;
if (Is_dropout) {
auto seeds = at::cuda::philox::unpack(params.philox_args);
const index_t tidx_global = blockIdx.x * blockDim.x + threadIdx.x;
curand_init(std::get<0>(seeds), tidx_global, std::get<1>(seeds), &state);
}
const index_t num_valid_ldgs = ((params.cols / Ktraits::ELTS_PER_LDG) - 1 - c + VEC_COLS_PER_LDG) / VEC_COLS_PER_LDG;
Wvec gamma[LDGS];
Wvec beta[LDGS];
Wvec colscale[LDGS];
index_t idx = c;
#pragma unroll
for( int it = 0; it < LDGS; it++ ) {
if (Is_even_cols || (it < num_valid_ldgs)) {
gamma[it].load_from(params.gamma, idx);
if (params.beta != nullptr) {
beta[it].load_from(params.beta, idx);
} else {
beta[it].zero_();
}
if (Has_colscale) { colscale[it].load_from(params.colscale, idx); }
idx += VEC_COLS_PER_LDG;
}
}
for( int row = r; row < params.rows; row += params.ctas_per_col * ROWS_PER_CTA ) {
const compute_t rowscale_val = !Has_subset ? (params.rowscale == nullptr ? 1.0f : compute_t(rowscale[row])) : params.rowscale_const;
const int row_x0 = !Has_subset ? row + 1 : x0_subset[row];
const int row_z = !Has_subset ? row + 1 : z_subset[row];
const bool load_x0 = !Has_subset || row_x0 > 0;
index_t idx_x = row * params.cols / Ktraits::ELTS_PER_LDG + c;
index_t idx_x0 = !Has_subset ? idx_x : (load_x0 ? (row_x0 - 1) * params.cols / Ktraits::ELTS_PER_LDG + c : 0);
compute_t xf[LDGS * NUM_ELTS];
#pragma unroll
for( int it = 0; it < LDGS; it++ ) {
if (Is_even_cols || (it < num_valid_ldgs)) {
Ivec x0;
Rvec residual;
Rvec x;
Mvec dmask;
if (load_x0) { x0.load_from(params.x0, !Has_subset ? idx_x : idx_x0); }
if (has_residual) { residual.load_from(params.residual, idx_x); }
#pragma unroll
for( int jt = 0; jt < NUM_ELTS; jt++ ) {
// TD [2022-04-22]: We're memory bound, not compute bound, so we don't need to use
// the more efficient curand_uniform4.
compute_t x_ij;
if (load_x0) {
mask_t keep = !Is_dropout ? true : curand_uniform(&state) <= params.dropout_keep_p;
if (Is_dropout) { dmask.data.elt[jt] = keep; }
compute_t x0_ij = compute_t(x0.data.elt[jt]) * rowscale_val;
x0_ij = keep ? (Is_dropout ? x0_ij * params.dropout_scale : x0_ij) : 0.0f;
if (Has_colscale) { x0_ij *= compute_t(colscale[it].data.elt[jt]); }
x_ij = has_residual ? x0_ij + compute_t(residual.data.elt[jt]) : x0_ij;
} else {
x_ij = has_residual ? compute_t(residual.data.elt[jt]) : 0.f;
}
if (save_x) { x.data.elt[jt] = x_ij; }
xf[it * NUM_ELTS + jt] = x_ij;
}
if (save_x) { x.store_to(params.x, idx_x); }
if (Is_dropout && load_x0) { dmask.store_to(params.dmask, !Has_subset ? idx_x : idx_x0); }
idx_x += VEC_COLS_PER_LDG;
idx_x0 += VEC_COLS_PER_LDG;
}
}
static_assert(CTAS_PER_ROW == 1, "Don't support multiple CTAs per row for now");
const index_t num_vecs = params.cols / Ktraits::ELTS_PER_LDG;
const index_t num_full_ldgs = num_vecs / Ktraits::VEC_COLS_PER_LDG;
const index_t remaining_vecs = num_vecs % Ktraits::VEC_COLS_PER_LDG;
auto valid_elts_in_warp_fn = [num_full_ldgs, remaining_vecs] (int warp_n) -> int {
// Need to convert to int, otherwise the subtraction will wrap around.
const index_t valid_partial_vecs_in_warp =
std::min(std::max(int(remaining_vecs) - int(warp_n * THREADS_PER_WARP), int(0)),
int(THREADS_PER_WARP));
return (num_full_ldgs * THREADS_PER_WARP + valid_partial_vecs_in_warp) * NUM_ELTS;
};
stats_t s = stats.template compute<Is_even_cols>(
xf, params.inverse_cols, valid_elts_in_warp_fn, num_valid_ldgs * NUM_ELTS
);
compute_t mu = layer_norm::Get<0>::of<stats_t, compute_t>(s);
compute_t m2 = layer_norm::Get<1>::of<stats_t, compute_t>(s);
if( bidn == 0 && warp_n == 0 && lane == 0 ) {
mu_ptr[row] = mu;
}
compute_t rs = rsqrtf(m2 * params.inverse_cols + params.epsilon + (!params.is_rms_norm ? 0.f : mu * mu));
if( bidn == 0 && warp_n == 0 && lane == 0 ) {
rs_ptr[row] = rs;
}
const bool save_z = !Has_subset || row_z > 0;
if (save_z) {
index_t idx_z = (!Has_subset ? row : (row_z - 1)) * params.cols / Ktraits::ELTS_PER_LDG + c;
#pragma unroll
for( int it = 0; it < LDGS; it++ ) {
if (Is_even_cols || (it < num_valid_ldgs)) {
Ovec z;
#pragma unroll
for( int jt = 0; jt < NUM_ELTS; jt++ ) {
compute_t y_ij = compute_t(rs * (xf[it * NUM_ELTS + jt] - (!params.is_rms_norm ? mu : 0.f)));
compute_t g_ij = gamma[it].data.elt[jt];
compute_t b_ij = beta[it].data.elt[jt];
z.data.elt[jt] = output_t(g_ij * y_ij + b_ij);
}
z.store_to(params.z, idx_z);
idx_z += VEC_COLS_PER_LDG;
}
}
}
}
}
} // namespace layer_norm
using namespace layer_norm;
template<
typename weight_t,
typename input_t,
typename residual_t,
typename output_t,
typename compute_t,
typename index_t,
int HIDDEN_SIZE,
int CTAS_PER_ROW,
int WARPS_M,
int WARPS_N,
int BYTES_PER_LDG
>
void launch_(LaunchParams<FwdParams> &launch_params, const bool configure_params){
using Kernel_traits = Kernel_traits<weight_t,
input_t,
residual_t,
output_t,
compute_t,
index_t,
HIDDEN_SIZE,
CTAS_PER_ROW,
WARPS_M,
WARPS_N,
BYTES_PER_LDG
>;
bool has_colscale = launch_params.params.colscale != nullptr;
bool has_subset = launch_params.params.x0_subset != nullptr;
bool is_even_cols = launch_params.params.cols == HIDDEN_SIZE;
BOOL_SWITCH(launch_params.params.dropout_keep_p < 1.f, IsDropoutConst, [&] {
BOOL_SWITCH(has_colscale, HasColscaleConst, [&] {
BOOL_SWITCH(has_subset, HasSubsetConst, [&] {
BOOL_SWITCH(is_even_cols, IsEvenColsConst, [&] {
auto kernel = &ln_fwd_kernel<Kernel_traits, IsDropoutConst, HasColscaleConst, HasSubsetConst, IsEvenColsConst>;
if( configure_params ) {
int ctas_per_sm;
CHECK_CUDA(cudaOccupancyMaxActiveBlocksPerMultiprocessor(
&ctas_per_sm, kernel, Kernel_traits::THREADS_PER_CTA, Kernel_traits::SMEM_BYTES_FWD));
launch_params.params.ctas_per_col = launch_params.props->multiProcessorCount * ctas_per_sm / Kernel_traits::CTAS_PER_ROW;
const size_t rows_per_loop = launch_params.params.ctas_per_col * Kernel_traits::ROWS_PER_CTA;
launch_params.elts_per_thread = (launch_params.params.rows + rows_per_loop - 1) / rows_per_loop * Kernel_traits::LDGS * Kernel_traits::NUM_ELTS;
launch_params.barrier_size = 0;
launch_params.workspace_bytes = 0;
if(Kernel_traits::CTAS_PER_ROW > 1) {
launch_params.barrier_size = 2 * launch_params.params.ctas_per_col;
launch_params.workspace_bytes = launch_params.params.ctas_per_col
* Kernel_traits::WARPS_M
* Kernel_traits::CTAS_PER_ROW
* sizeof(typename Kernel_traits::Stats::stats_t)
* 2;
}
return;
}
if( Kernel_traits::SMEM_BYTES_FWD >= 48 * 1024 ) {
CHECK_CUDA(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, Kernel_traits::SMEM_BYTES_FWD));
}
auto stream = launch_params.stream;
auto ctas_per_col = launch_params.params.ctas_per_col;
if( Kernel_traits::CTAS_PER_ROW == 1 ) {
kernel<<<ctas_per_col, Kernel_traits::THREADS_PER_CTA, Kernel_traits::SMEM_BYTES_FWD, stream>>>(launch_params.params);
} else {
dim3 grid(Kernel_traits::CTAS_PER_ROW * ctas_per_col);
dim3 block(Kernel_traits::THREADS_PER_CTA);
void *params_ = (void *)&launch_params.params;
cudaLaunchCooperativeKernel((void *)kernel, grid, block, (void **)&params_, Kernel_traits::SMEM_BYTES_FWD, stream);
}
});
});
});
});
}