Spaces:
Sleeping
Sleeping
namespace layer_norm { | |
template<typename Ktraits, bool Is_dropout, bool Has_colscale, bool Has_subset, bool Is_even_cols> | |
__global__ __launch_bounds__(Ktraits::THREADS_PER_CTA) | |
void ln_fwd_kernel(FwdParams params) { | |
enum { ROWS_PER_CTA = Ktraits::ROWS_PER_CTA }; | |
enum { WARPS_N = Ktraits::WARPS_N }; | |
enum { WARPS_M = Ktraits::WARPS_M }; | |
enum { THREADS_PER_ROW = Ktraits::THREADS_PER_ROW }; | |
enum { VEC_COLS_PER_LDG = Ktraits::VEC_COLS_PER_LDG }; | |
enum { BYTES_PER_ROW = Ktraits::BYTES_PER_ROW }; | |
enum { LDGS = Ktraits::LDGS }; | |
enum { NUM_ELTS = Ktraits::NUM_ELTS }; | |
enum { CTAS_PER_ROW = Ktraits::CTAS_PER_ROW }; | |
using input_t = typename Ktraits::input_t; | |
using residual_t = typename Ktraits::residual_t; | |
using output_t = typename Ktraits::output_t; | |
using index_t = typename Ktraits::index_t; | |
using compute_t = typename Ktraits::compute_t; | |
using mask_t = typename Ktraits::mask_t; | |
using Ivec = typename Ktraits::Ivec; | |
using Rvec = typename Ktraits::Rvec; | |
using Ovec = typename Ktraits::Ovec; | |
using Wvec = typename Ktraits::Wvec; | |
using Cvec = typename Ktraits::Cvec; | |
using Mvec = typename Ktraits::Mvec; | |
using Stats = typename Ktraits::Stats; | |
using stats_t = typename Stats::stats_t; | |
const bool has_residual = params.residual != nullptr; | |
const bool save_x = has_residual || Is_dropout || Has_colscale || (params.rowscale != nullptr) || Has_subset || !(std::is_same<input_t, residual_t>::value); | |
extern __shared__ char smem_[]; | |
const index_t tidx = threadIdx.x; | |
const index_t bidn = blockIdx.x % CTAS_PER_ROW; | |
const index_t bidm = blockIdx.x / CTAS_PER_ROW; | |
const index_t lane = tidx % THREADS_PER_WARP; | |
const index_t warp = tidx / THREADS_PER_WARP; | |
const index_t warp_m = warp / WARPS_N; | |
const index_t warp_n = warp % WARPS_N; | |
const index_t r = bidm * ROWS_PER_CTA + warp_m; | |
const index_t c = bidn * THREADS_PER_ROW + warp_n * THREADS_PER_WARP + lane; | |
Stats stats(params, bidm, bidn, warp_m, warp_n, lane, smem_); | |
compute_t *mu_ptr = static_cast<compute_t *>(params.mu); | |
compute_t *rs_ptr = static_cast<compute_t *>(params.rs); | |
const input_t *rowscale = static_cast<input_t *>(params.rowscale); | |
const index_t *x0_subset = static_cast<index_t *>(params.x0_subset); | |
const index_t *z_subset = static_cast<index_t *>(params.z_subset); | |
// https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/native/cuda/Dropout.cu | |
curandStatePhilox4_32_10_t state; | |
if (Is_dropout) { | |
auto seeds = at::cuda::philox::unpack(params.philox_args); | |
const index_t tidx_global = blockIdx.x * blockDim.x + threadIdx.x; | |
curand_init(std::get<0>(seeds), tidx_global, std::get<1>(seeds), &state); | |
} | |
const index_t num_valid_ldgs = ((params.cols / Ktraits::ELTS_PER_LDG) - 1 - c + VEC_COLS_PER_LDG) / VEC_COLS_PER_LDG; | |
Wvec gamma[LDGS]; | |
Wvec beta[LDGS]; | |
Wvec colscale[LDGS]; | |
index_t idx = c; | |
for( int it = 0; it < LDGS; it++ ) { | |
if (Is_even_cols || (it < num_valid_ldgs)) { | |
gamma[it].load_from(params.gamma, idx); | |
if (params.beta != nullptr) { | |
beta[it].load_from(params.beta, idx); | |
} else { | |
beta[it].zero_(); | |
} | |
if (Has_colscale) { colscale[it].load_from(params.colscale, idx); } | |
idx += VEC_COLS_PER_LDG; | |
} | |
} | |
for( int row = r; row < params.rows; row += params.ctas_per_col * ROWS_PER_CTA ) { | |
const compute_t rowscale_val = !Has_subset ? (params.rowscale == nullptr ? 1.0f : compute_t(rowscale[row])) : params.rowscale_const; | |
const int row_x0 = !Has_subset ? row + 1 : x0_subset[row]; | |
const int row_z = !Has_subset ? row + 1 : z_subset[row]; | |
const bool load_x0 = !Has_subset || row_x0 > 0; | |
index_t idx_x = row * params.cols / Ktraits::ELTS_PER_LDG + c; | |
index_t idx_x0 = !Has_subset ? idx_x : (load_x0 ? (row_x0 - 1) * params.cols / Ktraits::ELTS_PER_LDG + c : 0); | |
compute_t xf[LDGS * NUM_ELTS]; | |
for( int it = 0; it < LDGS; it++ ) { | |
if (Is_even_cols || (it < num_valid_ldgs)) { | |
Ivec x0; | |
Rvec residual; | |
Rvec x; | |
Mvec dmask; | |
if (load_x0) { x0.load_from(params.x0, !Has_subset ? idx_x : idx_x0); } | |
if (has_residual) { residual.load_from(params.residual, idx_x); } | |
for( int jt = 0; jt < NUM_ELTS; jt++ ) { | |
// TD [2022-04-22]: We're memory bound, not compute bound, so we don't need to use | |
// the more efficient curand_uniform4. | |
compute_t x_ij; | |
if (load_x0) { | |
mask_t keep = !Is_dropout ? true : curand_uniform(&state) <= params.dropout_keep_p; | |
if (Is_dropout) { dmask.data.elt[jt] = keep; } | |
compute_t x0_ij = compute_t(x0.data.elt[jt]) * rowscale_val; | |
x0_ij = keep ? (Is_dropout ? x0_ij * params.dropout_scale : x0_ij) : 0.0f; | |
if (Has_colscale) { x0_ij *= compute_t(colscale[it].data.elt[jt]); } | |
x_ij = has_residual ? x0_ij + compute_t(residual.data.elt[jt]) : x0_ij; | |
} else { | |
x_ij = has_residual ? compute_t(residual.data.elt[jt]) : 0.f; | |
} | |
if (save_x) { x.data.elt[jt] = x_ij; } | |
xf[it * NUM_ELTS + jt] = x_ij; | |
} | |
if (save_x) { x.store_to(params.x, idx_x); } | |
if (Is_dropout && load_x0) { dmask.store_to(params.dmask, !Has_subset ? idx_x : idx_x0); } | |
idx_x += VEC_COLS_PER_LDG; | |
idx_x0 += VEC_COLS_PER_LDG; | |
} | |
} | |
static_assert(CTAS_PER_ROW == 1, "Don't support multiple CTAs per row for now"); | |
const index_t num_vecs = params.cols / Ktraits::ELTS_PER_LDG; | |
const index_t num_full_ldgs = num_vecs / Ktraits::VEC_COLS_PER_LDG; | |
const index_t remaining_vecs = num_vecs % Ktraits::VEC_COLS_PER_LDG; | |
auto valid_elts_in_warp_fn = [num_full_ldgs, remaining_vecs] (int warp_n) -> int { | |
// Need to convert to int, otherwise the subtraction will wrap around. | |
const index_t valid_partial_vecs_in_warp = | |
std::min(std::max(int(remaining_vecs) - int(warp_n * THREADS_PER_WARP), int(0)), | |
int(THREADS_PER_WARP)); | |
return (num_full_ldgs * THREADS_PER_WARP + valid_partial_vecs_in_warp) * NUM_ELTS; | |
}; | |
stats_t s = stats.template compute<Is_even_cols>( | |
xf, params.inverse_cols, valid_elts_in_warp_fn, num_valid_ldgs * NUM_ELTS | |
); | |
compute_t mu = layer_norm::Get<0>::of<stats_t, compute_t>(s); | |
compute_t m2 = layer_norm::Get<1>::of<stats_t, compute_t>(s); | |
if( bidn == 0 && warp_n == 0 && lane == 0 ) { | |
mu_ptr[row] = mu; | |
} | |
compute_t rs = rsqrtf(m2 * params.inverse_cols + params.epsilon + (!params.is_rms_norm ? 0.f : mu * mu)); | |
if( bidn == 0 && warp_n == 0 && lane == 0 ) { | |
rs_ptr[row] = rs; | |
} | |
const bool save_z = !Has_subset || row_z > 0; | |
if (save_z) { | |
index_t idx_z = (!Has_subset ? row : (row_z - 1)) * params.cols / Ktraits::ELTS_PER_LDG + c; | |
for( int it = 0; it < LDGS; it++ ) { | |
if (Is_even_cols || (it < num_valid_ldgs)) { | |
Ovec z; | |
for( int jt = 0; jt < NUM_ELTS; jt++ ) { | |
compute_t y_ij = compute_t(rs * (xf[it * NUM_ELTS + jt] - (!params.is_rms_norm ? mu : 0.f))); | |
compute_t g_ij = gamma[it].data.elt[jt]; | |
compute_t b_ij = beta[it].data.elt[jt]; | |
z.data.elt[jt] = output_t(g_ij * y_ij + b_ij); | |
} | |
z.store_to(params.z, idx_z); | |
idx_z += VEC_COLS_PER_LDG; | |
} | |
} | |
} | |
} | |
} | |
} // namespace layer_norm | |
using namespace layer_norm; | |
template< | |
typename weight_t, | |
typename input_t, | |
typename residual_t, | |
typename output_t, | |
typename compute_t, | |
typename index_t, | |
int HIDDEN_SIZE, | |
int CTAS_PER_ROW, | |
int WARPS_M, | |
int WARPS_N, | |
int BYTES_PER_LDG | |
> | |
void launch_(LaunchParams<FwdParams> &launch_params, const bool configure_params){ | |
using Kernel_traits = Kernel_traits<weight_t, | |
input_t, | |
residual_t, | |
output_t, | |
compute_t, | |
index_t, | |
HIDDEN_SIZE, | |
CTAS_PER_ROW, | |
WARPS_M, | |
WARPS_N, | |
BYTES_PER_LDG | |
>; | |
bool has_colscale = launch_params.params.colscale != nullptr; | |
bool has_subset = launch_params.params.x0_subset != nullptr; | |
bool is_even_cols = launch_params.params.cols == HIDDEN_SIZE; | |
BOOL_SWITCH(launch_params.params.dropout_keep_p < 1.f, IsDropoutConst, [&] { | |
BOOL_SWITCH(has_colscale, HasColscaleConst, [&] { | |
BOOL_SWITCH(has_subset, HasSubsetConst, [&] { | |
BOOL_SWITCH(is_even_cols, IsEvenColsConst, [&] { | |
auto kernel = &ln_fwd_kernel<Kernel_traits, IsDropoutConst, HasColscaleConst, HasSubsetConst, IsEvenColsConst>; | |
if( configure_params ) { | |
int ctas_per_sm; | |
CHECK_CUDA(cudaOccupancyMaxActiveBlocksPerMultiprocessor( | |
&ctas_per_sm, kernel, Kernel_traits::THREADS_PER_CTA, Kernel_traits::SMEM_BYTES_FWD)); | |
launch_params.params.ctas_per_col = launch_params.props->multiProcessorCount * ctas_per_sm / Kernel_traits::CTAS_PER_ROW; | |
const size_t rows_per_loop = launch_params.params.ctas_per_col * Kernel_traits::ROWS_PER_CTA; | |
launch_params.elts_per_thread = (launch_params.params.rows + rows_per_loop - 1) / rows_per_loop * Kernel_traits::LDGS * Kernel_traits::NUM_ELTS; | |
launch_params.barrier_size = 0; | |
launch_params.workspace_bytes = 0; | |
if(Kernel_traits::CTAS_PER_ROW > 1) { | |
launch_params.barrier_size = 2 * launch_params.params.ctas_per_col; | |
launch_params.workspace_bytes = launch_params.params.ctas_per_col | |
* Kernel_traits::WARPS_M | |
* Kernel_traits::CTAS_PER_ROW | |
* sizeof(typename Kernel_traits::Stats::stats_t) | |
* 2; | |
} | |
return; | |
} | |
if( Kernel_traits::SMEM_BYTES_FWD >= 48 * 1024 ) { | |
CHECK_CUDA(cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, Kernel_traits::SMEM_BYTES_FWD)); | |
} | |
auto stream = launch_params.stream; | |
auto ctas_per_col = launch_params.params.ctas_per_col; | |
if( Kernel_traits::CTAS_PER_ROW == 1 ) { | |
kernel<<<ctas_per_col, Kernel_traits::THREADS_PER_CTA, Kernel_traits::SMEM_BYTES_FWD, stream>>>(launch_params.params); | |
} else { | |
dim3 grid(Kernel_traits::CTAS_PER_ROW * ctas_per_col); | |
dim3 block(Kernel_traits::THREADS_PER_CTA); | |
void *params_ = (void *)&launch_params.params; | |
cudaLaunchCooperativeKernel((void *)kernel, grid, block, (void **)¶ms_, Kernel_traits::SMEM_BYTES_FWD, stream); | |
} | |
}); | |
}); | |
}); | |
}); | |
} | |