Do0rMaMu's picture
Upload folder using huggingface_hub
e45d058 verified
raw
history blame
10.4 kB
// Adapted from https://github.com/NVIDIA/apex/blob/master/csrc/fused_dense.cpp
// We make it work for bfloat16
#include <torch/extension.h>
#include <torch/torch.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <vector>
#include <stdio.h>
#define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
// https://github.com/NVIDIA/apex/blob/master/csrc/type_shim.h
// #if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 800
#define DISPATCH_HALF_AND_BF16(TYPE, NAME, ...) \
switch (TYPE) { \
case at::ScalarType::Half: { \
using scalar_t = at::Half; \
__VA_ARGS__(); \
break; \
} \
case at::ScalarType::BFloat16: { \
using scalar_t = at::BFloat16; \
__VA_ARGS__(); \
break; \
} \
default: \
AT_ERROR(#NAME, " not implemented for '", toString(TYPE), "'"); \
}
template <typename T>
int linear_bias_wgrad_cuda(const T *input, const T *d_output, int64_t in_features, int64_t batch_size, int64_t out_features, T *d_weight, T *d_bias, void *lt_workspace, size_t workspaceSize);
template <typename T>
int linear_act_forward_cuda(const T *input, const T *weight, const T *bias, int64_t in_features, int64_t batch_size, int64_t out_features, bool is_gelu, int heuristic, T *output, void *pre_act, void *lt_workspace, size_t workspaceSize);
template <typename T>
int bias_act_linear_dgrad_bgrad_cuda(const T *weight, const T *d_output, const void *pre_act, int64_t in_features, int64_t batch_size, int64_t out_features, bool is_gelu, int heuristic, T *d_input, T *d_bias, void *lt_workspace, size_t workspaceSize);
std::vector<at::Tensor> linear_bias_wgrad(at::Tensor input, at::Tensor d_output, bool has_d_bias) {
int64_t batch_size = input.size(0);
int64_t in_features = input.size(1);
int64_t out_features = d_output.size(1);
TORCH_CHECK(input.dtype() == torch::kFloat16 || input.dtype() == torch::kBFloat16);
TORCH_CHECK(input.dtype() == d_output.dtype());
TORCH_CHECK(input.is_cuda());
TORCH_CHECK(d_output.is_cuda());
TORCH_CHECK(input.is_contiguous());
TORCH_CHECK(d_output.is_contiguous());
CHECK_SHAPE(input, batch_size, in_features);
CHECK_SHAPE(d_output, batch_size, out_features);
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at::cuda::CUDAGuard device_guard{(char)input.get_device()};
// create output/workspace tensor
auto opts = input.options();
auto d_weight = at::empty({out_features, in_features}, opts);
at::Tensor d_bias;
if (has_d_bias) {
#if defined(CUBLAS_VERSION) && CUBLAS_VERSION < 11600
d_bias = d_output.view({-1, out_features}).sum(0, false);
#else
d_bias = at::empty({out_features}, opts);
#endif
}
// See https://github.com/pytorch/pytorch/issues/73328 for reasoning behind setting this to 1M.
// However, Apex sets it to 4M and TransformerEngine sets to 32M for Hopper and 4M for other GPUs
// https://github.com/NVIDIA/TransformerEngine/blob/a0f0065498bbcfc1da78cf9e8b166f5381613fbc/transformer_engine/pytorch/module.py#L91
size_t workspaceSize = 1024 * 1024 * (at::cuda::getCurrentDeviceProperties()->major >= 9 ? 32 : 4);
auto lt_workspace = at::empty({static_cast<int64_t>(workspaceSize)}, opts.dtype(torch::kUInt8));
DISPATCH_HALF_AND_BF16(input.scalar_type(), "linear_bias_wgrad", [&] {
auto result = linear_bias_wgrad_cuda<scalar_t>(
input.data_ptr<scalar_t>(),
d_output.data_ptr<scalar_t>(),
in_features,
batch_size,
out_features,
d_weight.data_ptr<scalar_t>(),
has_d_bias ? d_bias.data_ptr<scalar_t>() : nullptr,
(void*) (lt_workspace.data_ptr()),
workspaceSize);
TORCH_CHECK(result == 0, "linear_bias_wgrad failed.");
});
return {d_weight, d_bias};
}
std::vector<at::Tensor> linear_act_forward(at::Tensor input, at::Tensor weight,
c10::optional<at::Tensor> bias_,
bool is_gelu, bool save_pre_act, int heuristic) {
int64_t batch_size = input.size(0);
int64_t in_features = input.size(1);
int64_t out_features = weight.size(0);
TORCH_CHECK(input.dtype() == torch::kFloat16 || input.dtype() == torch::kBFloat16);
TORCH_CHECK(input.dtype() == weight.dtype());
TORCH_CHECK(input.is_cuda());
TORCH_CHECK(weight.is_cuda());
TORCH_CHECK(input.is_contiguous());
TORCH_CHECK(weight.is_contiguous());
CHECK_SHAPE(input, batch_size, in_features);
CHECK_SHAPE(weight, out_features, in_features);
if (bias_.has_value()) {
auto bias = bias_.value();
TORCH_CHECK(bias.dtype() == input.dtype());
TORCH_CHECK(bias.is_cuda());
TORCH_CHECK(bias.is_contiguous());
CHECK_SHAPE(bias, out_features);
}
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at::cuda::CUDAGuard device_guard{(char)input.get_device()};
// create output/workspace tensor
auto opts = input.options();
auto output = at::empty({batch_size, out_features}, opts);
at::Tensor pre_act;
// If ReLU, cuBlasLT stores a bit-mask (1 bit per element)
if (save_pre_act) { pre_act = at::empty({batch_size, is_gelu ? out_features : out_features / 8},
is_gelu ? opts : opts.dtype(torch::kUInt8)); }
// See https://github.com/pytorch/pytorch/issues/73328 for reasoning behind setting this to 1M.
// However, Apex sets it to 4M and TransformerEngine sets to 32M for Hopper and 4M for other GPUs
// https://github.com/NVIDIA/TransformerEngine/blob/a0f0065498bbcfc1da78cf9e8b166f5381613fbc/transformer_engine/pytorch/module.py#L91
size_t workspaceSize = 1024 * 1024 * (at::cuda::getCurrentDeviceProperties()->major >= 9 ? 32 : 4);
auto lt_workspace = at::empty({static_cast<int64_t>(workspaceSize)}, opts.dtype(torch::kUInt8));
DISPATCH_HALF_AND_BF16(input.scalar_type(), "linear_act_forward", [&] {
auto result = linear_act_forward_cuda<scalar_t>(
input.data_ptr<scalar_t>(),
weight.data_ptr<scalar_t>(),
bias_.has_value()? bias_.value().data_ptr<scalar_t>() : nullptr,
in_features,
batch_size,
out_features,
is_gelu,
heuristic,
output.data_ptr<scalar_t>(),
save_pre_act ? pre_act.data_ptr() : nullptr,
(void*) (lt_workspace.data_ptr()),
workspaceSize);
TORCH_CHECK(result == 0, "linear_act_forward failed.");
});
std::vector<at::Tensor> result = {output};
if (save_pre_act) { result.push_back(pre_act); };
return result;
}
std::vector<at::Tensor> bias_act_linear_dgrad_bgrad(
at::Tensor weight, at::Tensor d_output, at::Tensor pre_act, bool is_gelu, int heuristic
) {
int64_t batch_size = d_output.size(0);
int64_t out_features = d_output.size(1);
int64_t in_features = weight.size(1);
TORCH_CHECK(weight.dtype() == torch::kFloat16 || weight.dtype() == torch::kBFloat16);
TORCH_CHECK(weight.dtype() == d_output.dtype());
TORCH_CHECK(is_gelu ? (pre_act.dtype() == weight.dtype()) : (pre_act.dtype() == torch::kUInt8));
TORCH_CHECK(weight.is_cuda());
TORCH_CHECK(d_output.is_cuda());
TORCH_CHECK(pre_act.is_cuda());
TORCH_CHECK(weight.is_contiguous());
TORCH_CHECK(d_output.is_contiguous());
TORCH_CHECK(pre_act.is_contiguous());
CHECK_SHAPE(weight, out_features, in_features);
CHECK_SHAPE(d_output, batch_size, out_features);
// If ReLU, cuBlasLT stores a bit-mask (1 bit per element)
CHECK_SHAPE(pre_act, batch_size, is_gelu ? in_features : in_features / 8);
// Otherwise the kernel will be launched from cuda:0 device
// Cast to char to avoid compiler warning about narrowing
at::cuda::CUDAGuard device_guard{(char)weight.get_device()};
// create output/workspace tensor
auto opts = weight.options();
auto d_bias = at::empty({in_features}, opts);
auto d_input = at::empty({batch_size, in_features}, opts);
// See https://github.com/pytorch/pytorch/issues/73328 for reasoning behind setting this to 1M.
// However, Apex sets it to 4M and TransformerEngine sets to 32M for Hopper and 4M for other GPUs
// https://github.com/NVIDIA/TransformerEngine/blob/a0f0065498bbcfc1da78cf9e8b166f5381613fbc/transformer_engine/pytorch/module.py#L91
size_t workspaceSize = 1024 * 1024 * (at::cuda::getCurrentDeviceProperties()->major >= 9 ? 32 : 4);
auto lt_workspace = at::empty({static_cast<int64_t>(workspaceSize)}, opts.dtype(torch::kUInt8));
DISPATCH_HALF_AND_BF16(weight.scalar_type(), "bias_act_linear_dgrad_bgrad", [&] {
auto result = bias_act_linear_dgrad_bgrad_cuda<scalar_t>(
weight.data_ptr<scalar_t>(),
d_output.data_ptr<scalar_t>(),
pre_act.data_ptr(),
in_features,
batch_size,
out_features,
is_gelu,
heuristic,
d_input.data_ptr<scalar_t>(),
d_bias.data_ptr<scalar_t>(),
(void*) (lt_workspace.data_ptr()),
workspaceSize);
TORCH_CHECK(result == 0, "bias_act_linear_dgrad_bgrad failed.");
});
return {d_input, d_bias};
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("linear_bias_wgrad", &linear_bias_wgrad, "linear bias wgrad");
m.def("linear_act_forward", &linear_act_forward, "linear gelu/relu forward");
m.def("bias_act_linear_dgrad_bgrad", &bias_act_linear_dgrad_bgrad, "bias gelu/relu linear dgrad bgrad");
}