Spaces:
Sleeping
Sleeping
from functools import partial | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange, repeat | |
# from flash_attn.utils.benchmark import benchmark_forward, benchmark_backward, benchmark_combined, benchmark_all, benchmark_fwd_bwd, pytorch_profiler | |
from flash_attn.utils.benchmark import benchmark_forward, benchmark_backward, benchmark_combined, benchmark_all, benchmark_fwd_bwd, pytorch_profiler | |
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func | |
# # from flash_attn.triton.fused_attention import attention as attention | |
# from flash_attn.flash_attn_triton import flash_attn_qkvpacked_func | |
# from flash_attn.flash_attn_triton_og import attention as attention_og | |
# from triton.ops.flash_attention import attention as attention_triton | |
from flash_attn import flash_attn_qkvpacked_func, flash_attn_kvpacked_func | |
try: | |
from flash_attn.fused_softmax import scaled_upper_triang_masked_softmax | |
except ImportError: | |
scaled_upper_triang_masked_softmax = None | |
def attention_pytorch(qkv, dropout_p=0.0, causal=True): | |
""" | |
Arguments: | |
qkv: (batch_size, seqlen, 3, nheads, head_dim) | |
dropout_p: float | |
Output: | |
output: (batch_size, seqlen, nheads, head_dim) | |
""" | |
batch_size, seqlen, _, nheads, d = qkv.shape | |
q, k, v = qkv.unbind(dim=2) | |
q = rearrange(q, 'b t h d -> (b h) t d') | |
k = rearrange(k, 'b s h d -> (b h) d s') | |
softmax_scale = 1.0 / math.sqrt(d) | |
# Preallocate attn_weights for `baddbmm` | |
scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=qkv.dtype, device=qkv.device) | |
scores = rearrange(torch.baddbmm(scores, q, k, beta=0, alpha=softmax_scale), | |
'(b h) t s -> b h t s', h=nheads) | |
if causal: | |
# "triu_tril_cuda_template" not implemented for 'BFloat16' | |
# So we have to construct the mask in float | |
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1) | |
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess) | |
scores = scores + causal_mask.to(dtype=scores.dtype) | |
attention = torch.softmax(scores, dim=-1) | |
attention_drop = F.dropout(attention, dropout_p) | |
output = torch.einsum('bhts,bshd->bthd', attention_drop , v) | |
return output.to(dtype=qkv.dtype) | |
def attention_megatron(qkv): | |
""" | |
Arguments: | |
qkv: (batch_size, seqlen, 3, nheads, head_dim) | |
Output: | |
output: (batch_size, seqlen, nheads, head_dim) | |
""" | |
batch_size, seqlen, _, nheads, d = qkv.shape | |
q, k, v = qkv.unbind(dim=2) | |
q = rearrange(q, 'b t h d -> (b h) t d') | |
k = rearrange(k, 'b s h d -> (b h) d s') | |
softmax_scale = 1.0 / math.sqrt(d) | |
# Preallocate attn_weights for `baddbmm` | |
scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=qkv.dtype, device=qkv.device) | |
scores = rearrange(torch.baddbmm(scores, q, k, beta=0, alpha=softmax_scale), | |
'(b h) t s -> b h t s', h=nheads) | |
attention = scaled_upper_triang_masked_softmax(scores, None, scale=1.0) | |
output = torch.einsum('bhts,bshd->bthd', attention, v) | |
return output.to(dtype=qkv.dtype) | |
torch.manual_seed(0) | |
repeats = 30 | |
batch_size = 8 | |
seqlen = 2048 | |
nheads = 12 | |
headdim = 128 | |
# nheads = 24 | |
# headdim = 64 | |
# batch_size = 64 | |
# seqlen = 512 | |
# nheads = 8 | |
# headdim = 128 | |
dropout_p = 0.0 | |
causal = True | |
dtype = torch.float16 | |
device = 'cuda' | |
qkv = torch.randn(batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype, | |
requires_grad=True) | |
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, | |
device=qkv.device) | |
qkv_unpad = rearrange(qkv, 'b s ... -> (b s) ...').detach().requires_grad_(True) | |
# benchmark_all(flash_attn_varlen_qkvpacked_func, qkv_unpad, | |
# cu_seqlens, seqlen, dropout_p, causal=causal, repeats=repeats, desc='FlashAttention') | |
# pytorch_profiler(flash_attn_varlen_qkvpacked_func, qkv_unpad, | |
# cu_seqlens, seqlen, dropout_p, causal=causal, backward=True) | |
benchmark_forward(flash_attn_qkvpacked_func, qkv, dropout_p, causal=causal, repeats=repeats, desc='Fav2') | |
pytorch_profiler(flash_attn_qkvpacked_func, qkv, dropout_p, causal=causal, backward=False) | |
# for dropout_p in [0.1, 0.0]: | |
# for causal in [False, True]: | |
# print(f"### {dropout_p = }, {causal = } ###") | |
# pytorch_profiler(fav2_qkvpacked_func, qkv, dropout_p, causal=causal, backward=True) | |
# nheads_k = 2 | |
# q = torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype, requires_grad=True) | |
# kv = torch.randn(batch_size, seqlen, 2, nheads_k, headdim, device=device, dtype=dtype, | |
# requires_grad=True) | |
# if fav2_kvpacked_func is not None: | |
# benchmark_all(fav2_kvpacked_func, q, kv, dropout_p, causal=causal, repeats=repeats, desc='Fav2') | |
# pytorch_profiler(fav2_kvpacked_func, q, kv, dropout_p, causal=causal, backward=True) | |
# dropout_p = 0.0 | |
# causal = False | |
# benchmark_all(attention_pytorch, qkv, dropout_p, causal=causal, | |
# repeats=repeats, desc='PyTorch Attention') | |
# benchmark_all(flash_attn_qkvpacked_func, qkv, None, causal, repeats=repeats, desc='FlashAttention Triton') | |
# pytorch_profiler(flash_attn_qkvpacked_func, qkv, None, causal, backward=True) | |
# q, k, v = [torch.randn(batch_size, nheads, seqlen, headdim, device=device, dtype=dtype, | |
# requires_grad=True) for _ in range(3)] | |
# benchmark_all(attention_og, q, k, v, 1.0, repeats=repeats, desc='FlashAttention Triton OG') | |
# # pytorch_profiler(attention, q, k, v, 1.0, backward=True) | |
# if scaled_upper_triang_masked_softmax is not None: | |
# benchmark_all(attention_megatron, qkv, repeats=repeats, desc='Megatron Attention') | |
# from src.ops.fftconv import fftconv_func | |
# dim = nheads * headdim | |
# u = torch.randn(batch_size, dim, seqlen, device=device, dtype=dtype, requires_grad=True) | |
# k = torch.randn(dim, seqlen, device=device, requires_grad=True) | |
# D = torch.randn(dim, device=device, requires_grad=True) | |
# benchmark_all(fftconv_func, u, k, D, repeats=repeats, desc='FFTConv') | |
# pytorch_profiler(fftconv_func, u, k, D, backward=True) | |
# pytorch_profiler(torch.fft.rfft, u.float()) | |
flops = 4 * batch_size * seqlen ** 2 * nheads * headdim | |
ideal_a100_time = flops / 312 / 1e9 | |
print(f"Ideal A100 fwd time: {ideal_a100_time:.3f}ms, bwd time: {ideal_a100_time * 2.5:.3f}ms") | |
exit(0) | |
def time_fwd_bwd(func, *args, **kwargs): | |
time_f, time_b = benchmark_fwd_bwd(func, *args, **kwargs) | |
return time_f[1].mean, time_b[1].mean | |
bs_seqlen_vals = [(32, 512), (16, 1024), (8, 2048), (4, 4096), (2, 8192), (1, 16384)] | |
causal_vals = [False, True] | |
headdim_vals = [64, 128] | |
dim = 2048 | |
dropout_p = 0.0 | |
time_f = {} | |
time_b = {} | |
for causal in causal_vals: | |
for headdim in headdim_vals: | |
for batch_size, seqlen in bs_seqlen_vals: | |
nheads = dim // headdim | |
qkv = torch.randn(batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype, | |
requires_grad=True) | |
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, | |
device=qkv.device) | |
qkv_unpad = rearrange(qkv, 'b s ... -> (b s) ...').detach().requires_grad_(True) | |
f, b = time_fwd_bwd( | |
flash_attn_varlen_qkvpacked_func, qkv_unpad, cu_seqlens, seqlen, dropout_p, | |
causal=causal, repeats=repeats, verbose=False | |
) | |
time_f[(causal, headdim, batch_size, seqlen), "Flash"] = f | |
time_b[(causal, headdim, batch_size, seqlen), "Flash"] = b | |
qkv = qkv.detach().requires_grad_(True) | |
f, b = time_fwd_bwd( | |
fav2_qkvpacked_func, qkv, dropout_p, causal=causal, repeats=repeats, verbose=False | |
) | |
time_f[(causal, headdim, batch_size, seqlen), "Flash2"] = f | |
time_b[(causal, headdim, batch_size, seqlen), "Flash2"] = b | |
# q, k, v = [torch.randn(batch_size, nheads, seqlen, headdim, device=device, dtype=dtype, | |
# requires_grad=True) for _ in range(3)] | |
# # Try both values of sequence_parallel and pick the faster one | |
# f, b = time_fwd_bwd( | |
# attention_triton, q, k, v, causal, headdim**(-0.5), | |
# False, repeats=repeats, verbose=False | |
# ) | |
# _, b0 = time_fwd_bwd( | |
# attention_triton, q, k, v, causal, headdim**(-0.5), | |
# True, repeats=repeats, verbose=False | |
# ) | |
# time_f[(causal, headdim, batch_size, seqlen), "Triton"] = f | |
# time_b[(causal, headdim, batch_size, seqlen), "Triton"] = min(b, b0) | |
if seqlen <= 8 * 1024: | |
qkv = qkv.detach().requires_grad_(True) | |
f, b = time_fwd_bwd( | |
attention_pytorch, qkv, dropout_p, causal=causal, repeats=repeats, verbose=False | |
) | |
else: | |
f, b = float('nan'), float('nan') | |
time_f[(causal, headdim, batch_size, seqlen), "Pytorch"] = f | |
time_b[(causal, headdim, batch_size, seqlen), "Pytorch"] = b | |
# q, k, v = [torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype, | |
# requires_grad=True) for _ in range(3)] | |
# import xformers.ops as xops | |
# f, b = time_fwd_bwd( | |
# xops.memory_efficient_attention, q, k, v, | |
# attn_bias=xops.LowerTriangularMask() if causal else None, | |
# op=(xops.fmha.cutlass.FwOp, xops.fmha.cutlass.BwOp) | |
# ) | |
# time_f[(causal, headdim, batch_size, seqlen), "xformers"] = f | |
# time_b[(causal, headdim, batch_size, seqlen), "xformers"] = b | |
import pickle | |
with open('flash2_attn_time_h100.plk', 'wb') as fp: | |
pickle.dump((time_f, time_b), fp, protocol=pickle.HIGHEST_PROTOCOL) | |