Spaces:
Sleeping
Sleeping
# Copyright (c) 2024, Sanghun Cho, Tri Dao. | |
import pickle | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange, repeat | |
from flash_attn.layers.rotary import apply_rotary_emb | |
from flash_attn.utils.benchmark import benchmark_all, benchmark_forward, benchmark_backward | |
from flash_attn.utils.benchmark import benchmark_fwd_bwd, benchmark_combined | |
from flash_attn import flash_attn_qkvpacked_func, flash_attn_func | |
try: | |
import xformers.ops as xops | |
except ImportError: | |
xops = None | |
def generate_cos_sin(seqlen, rotary_dim, device, dtype): | |
assert rotary_dim % 2 == 0 | |
angle = torch.rand(seqlen * 2, rotary_dim // 2, device=device) * 2 * math.pi | |
cos = torch.cos(angle).to(dtype=dtype) | |
sin = torch.sin(angle).to(dtype=dtype) | |
return cos, sin | |
def flash_rotary(q, k, v, cos, sin, causal=False): | |
# corrected by @tridao comments | |
q = apply_rotary_emb( | |
q, cos, sin, seqlen_offsets=0, interleaved=False, inplace=True | |
) | |
k = apply_rotary_emb( | |
k, cos, sin, seqlen_offsets=0, interleaved=False, inplace=True | |
) | |
return flash_attn_func(q, k, v, causal=causal) | |
def attn_bias_from_alibi_slopes( | |
slopes, seqlen_q, seqlen_k, query_padding_mask=None, key_padding_mask=None, causal=False | |
): | |
batch, nheads = slopes.shape | |
device = slopes.device | |
slopes = rearrange(slopes, "b h -> b h 1 1") | |
if causal: | |
return torch.arange(-seqlen_k + 1, 1, device=device, dtype=torch.float32) * slopes | |
else: | |
row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1") | |
col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long) | |
sk = ( | |
seqlen_k | |
if key_padding_mask is None | |
else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1") | |
) | |
sq = ( | |
seqlen_q | |
if query_padding_mask is None | |
else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1") | |
) | |
relative_pos = torch.abs(row_idx + sk - sq - col_idx) | |
return -slopes * relative_pos.to(dtype=slopes.dtype) | |
def flops(batch, seqlen, headdim, nheads, causal, mode="fwd"): | |
assert mode in ["fwd", "bwd", "fwd_bwd"] | |
f = 4 * batch * seqlen**2 * nheads * headdim // (2 if causal else 1) | |
return f if mode == "fwd" else (2.5 * f if mode == "bwd" else 3.5 * f) | |
def efficiency(flop, time): | |
return (flop / time / 10**12) if not math.isnan(time) else 0.0 | |
def attention_pytorch(q, k, v, dropout_p=0.0, causal=True, attn_bias=None): | |
""" | |
Arguments: | |
q, k, v: (batch_size, seqlen, nheads, head_dim) | |
dropout_p: float | |
attn_bias: (batch_size, nheads, seqlen, seqlen) or (1, nheads, seqlen, seqlen) | |
Output: | |
output: (batch_size, seqlen, nheads, head_dim) | |
""" | |
batch_size, seqlen, nheads, d = q.shape | |
q = rearrange(q, 'b t h d -> (b h) t d') | |
k = rearrange(k, 'b s h d -> (b h) d s') | |
softmax_scale = 1.0 / math.sqrt(d) | |
# Preallocate attn_weights for `baddbmm` | |
if attn_bias is not None: | |
scores = rearrange(attn_bias, 'b h t s -> (b h) t s') | |
else: | |
scores = torch.empty(batch_size * nheads, seqlen, seqlen, dtype=q.dtype, device=q.device) | |
scores = rearrange(torch.baddbmm(scores, q, k, beta=1.0, alpha=softmax_scale), | |
'(b h) t s -> b h t s', h=nheads) | |
if causal: | |
# "triu_tril_cuda_template" not implemented for 'BFloat16' | |
# So we have to construct the mask in float | |
causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1) | |
# TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess) | |
scores = scores + causal_mask.to(dtype=scores.dtype) | |
attention = torch.softmax(scores, dim=-1) | |
attention_drop = F.dropout(attention, dropout_p) | |
output = torch.einsum('bhts,bshd->bthd', attention_drop , v) | |
return output.to(dtype=q.dtype) | |
def time_fwd_bwd(func, *args, **kwargs): | |
time_f, time_b = benchmark_fwd_bwd(func, *args, **kwargs) | |
return time_f[1].mean, time_b[1].mean | |
repeats = 30 | |
device = 'cuda' | |
dtype = torch.float16 | |
bs_seqlen_vals = [(32, 512), (16, 1024), (8, 2048), (4, 4096), (2, 8192), (1, 16384)] | |
causal_vals = [False, True] | |
headdim_vals = [64, 128] | |
dim = 2048 | |
dropout_p = 0.0 | |
methods = (["fa2_alibi", "torch"] | |
+ (["xformers"] if xops is not None else []) | |
+ ["sdpa"] | |
+ ["fa2_baseline"] | |
+ ["fa2_rotary"]) | |
time_f = {} | |
time_b = {} | |
time_f_b = {} | |
speed_f = {} | |
speed_b = {} | |
speed_f_b = {} | |
for causal in causal_vals: | |
for headdim in headdim_vals: | |
for batch_size, seqlen in bs_seqlen_vals: | |
config = (causal, headdim, batch_size, seqlen) | |
nheads = dim // headdim | |
q, k, v = [torch.randn(batch_size, seqlen, nheads, headdim, device=device, dtype=dtype, | |
requires_grad=True) for _ in range(3)] | |
# alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3 | |
alibi_slopes = torch.rand(1, nheads, device=device, dtype=torch.float32) * 0.3 | |
attn_bias = attn_bias_from_alibi_slopes(alibi_slopes, seqlen, seqlen, causal=causal).to(dtype) | |
attn_bias = repeat(attn_bias, "1 ... -> b ...", b=batch_size) | |
f, b = time_fwd_bwd( | |
flash_attn_func, | |
q, k, v, | |
dropout_p, | |
causal=causal, | |
# alibi_slopes=alibi_slopes, | |
alibi_slopes=None, | |
repeats=repeats, | |
verbose=False | |
) | |
time_f[config, "fa2_baseline"] = f | |
time_b[config, "fa2_baseline"] = b | |
q = q.detach().requires_grad_(True) | |
k = k.detach().requires_grad_(True) | |
v = v.detach().requires_grad_(True) | |
f, b = time_fwd_bwd( | |
flash_attn_func, | |
q, k, v, | |
dropout_p, | |
causal=causal, | |
alibi_slopes=rearrange(alibi_slopes, "1 h -> h"), | |
# alibi_slopes=None, | |
repeats=repeats, | |
verbose=False | |
) | |
time_f[config, "fa2_alibi"] = f | |
time_b[config, "fa2_alibi"] = b | |
try: | |
q = q.detach().requires_grad_(True) | |
k = k.detach().requires_grad_(True) | |
v = v.detach().requires_grad_(True) | |
f, b = time_fwd_bwd( | |
attention_pytorch, | |
q, k, v, | |
dropout_p, | |
causal=causal, | |
attn_bias=attn_bias, | |
repeats=repeats, | |
verbose=False | |
) | |
except: # Skip if OOM | |
f, b = float('nan'), float('nan') | |
time_f[config, "torch"] = f | |
time_b[config, "torch"] = b | |
# F.sdpa doesn't currently (torch 2.1) dispatch to flash-attn but just to be safe | |
with torch.backends.cuda.sdp_kernel(enable_flash=False): | |
q_pt = q.detach().requires_grad_(True).transpose(1, 2) | |
k_pt = k.detach().requires_grad_(True).transpose(1, 2) | |
v_pt = v.detach().requires_grad_(True).transpose(1, 2) | |
f, b = time_fwd_bwd( | |
F.scaled_dot_product_attention, | |
q_pt, k_pt, v_pt, | |
attn_mask=attn_bias, | |
dropout_p=dropout_p, | |
is_causal=causal, | |
repeats=repeats, | |
verbose=False | |
) | |
time_f[config, "sdpa"] = f | |
time_b[config, "sdpa"] = b | |
if xops is not None: | |
q = q.detach().requires_grad_(True) | |
k = k.detach().requires_grad_(True) | |
v = v.detach().requires_grad_(True) | |
if causal: | |
attn_bias_xops = xops.LowerTriangularMask().add_bias(attn_bias.expand(-1, -1, seqlen, -1).to(dtype=q.dtype)) | |
# NotImplementedError: No operator found for `memory_efficient_attention_backward` with inputs: | |
# `[email protected]` is not supported because: | |
# attn_bias type is <class 'xformers.ops.fmha.attn_bias.LowerTriangularMaskWithTensorBias'> | |
# `cutlassB` is not supported because: | |
# attn_bias type is <class 'xformers.ops.fmha.attn_bias.LowerTriangularMaskWithTensorBias'> | |
attn_bias_xops = attn_bias_xops.materialize((batch_size, nheads, seqlen, seqlen), dtype=q.dtype, device=device) | |
else: | |
attn_bias_xops = attn_bias.to(dtype=q.dtype) | |
f, b = time_fwd_bwd( | |
xops.memory_efficient_attention, | |
q, k, v, | |
attn_bias_xops, | |
dropout_p, | |
repeats=repeats, | |
verbose=False | |
) | |
time_f[config, "xformers"] = f | |
time_b[config, "xformers"] = b | |
q = q.detach().requires_grad_(True) | |
k = k.detach().requires_grad_(True) | |
v = v.detach().requires_grad_(True) | |
cos, sin = generate_cos_sin(seqlen, headdim, device, dtype) | |
f, b = time_fwd_bwd( | |
flash_rotary, | |
q, k, v, | |
cos, sin, | |
causal, | |
repeats=repeats, | |
verbose=False | |
) | |
time_f[config, "fa2_rotary"] = f | |
time_b[config, "fa2_rotary"] = b | |
print(f"### causal={causal}, headdim={headdim}, batch_size={batch_size}, seqlen={seqlen} ###") | |
csv_output = "" | |
csv_output += f"{causal},{headdim},{batch_size},{seqlen}," | |
for method in methods: | |
time_f_b[config, method] = time_f[config, method] + time_b[config, method] | |
speed_f[config, method] = efficiency( | |
flops(batch_size, seqlen, headdim, nheads, causal, mode="fwd"), | |
time_f[config, method] | |
) | |
speed_b[config, method] = efficiency( | |
flops(batch_size, seqlen, headdim, nheads, causal, mode="bwd"), | |
time_b[config, method] | |
) | |
speed_f_b[config, method] = efficiency( | |
flops(batch_size, seqlen, headdim, nheads, causal, mode="fwd_bwd"), | |
time_f_b[config, method] | |
) | |
print( | |
f"{method} fwd: {speed_f[config, method]:.2f} TFLOPs/s, " | |
f"bwd: {speed_b[config, method]:.2f} TFLOPs/s, " | |
f"fwd + bwd: {speed_f_b[config, method]:.2f} TFLOPs/s" | |
) | |
csv_output += f"{speed_f[config, method]:.2f},{speed_b[config, method]:.2f},{speed_f_b[config, method]:.2f}," | |
print(csv_output) | |