File size: 46,550 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
# Copyright (c) 2023, Tri Dao.

from typing import Optional, Union

import torch
import torch.nn as nn

# isort: off
# We need to import the CUDA kernels after importing torch
import flash_attn_2_cuda as flash_attn_cuda

# isort: on


def _get_block_size_n(device, head_dim, is_dropout, is_causal):
    # This should match the block sizes in the CUDA kernel
    assert head_dim <= 256
    major, minor = torch.cuda.get_device_capability(device)
    is_sm8x = major == 8 and minor > 0  # Only include sm86 and sm89, exclude sm80 (A100)
    is_sm80 = major == 8 and minor == 0
    is_sm90 = major == 9 and minor == 0
    if head_dim <= 32:
        return 128
    if head_dim <= 64:
        return 128 if not is_dropout else 64
    elif head_dim <= 96:
        return 64
    elif head_dim <= 128:
        if is_sm8x:
            return 64 if (not is_dropout and is_causal) else 32
        else:
            return 64 if not is_dropout else 32
    elif head_dim <= 160:
        if is_sm8x:
            return 64
        else:
            return 32
    elif head_dim <= 192:
        return 64
    elif head_dim <= 224:
        return 64
    elif head_dim <= 256:
        return 64


def _flash_attn_forward(

    q, k, v, dropout_p, softmax_scale, causal, window_size, alibi_slopes, return_softmax

):
    maybe_contiguous = lambda x: x.contiguous() if x.stride(-1) != 1 else x
    q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
    out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd(
        q,
        k,
        v,
        None,
        alibi_slopes,
        dropout_p,
        softmax_scale,
        causal,
        window_size[0],
        window_size[1],
        return_softmax,
        None,
    )
    return out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state


def _flash_attn_varlen_forward(

    q,

    k,

    v,

    cu_seqlens_q,

    cu_seqlens_k,

    max_seqlen_q,

    max_seqlen_k,

    dropout_p,

    softmax_scale,

    causal,

    window_size,

    alibi_slopes,

    return_softmax,

    block_table,

):
    maybe_contiguous = lambda x: x.contiguous() if x.stride(-1) != 1 else x
    q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
    out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.varlen_fwd(
        q,
        k,
        v,
        None,
        cu_seqlens_q,
        cu_seqlens_k,
        None,
        block_table,
        alibi_slopes,
        max_seqlen_q,
        max_seqlen_k,
        dropout_p,
        softmax_scale,
        False,
        causal,
        window_size[0],
        window_size[1],
        return_softmax,
        None,
    )
    # if out.isnan().any() or softmax_lse.isnan().any():
    #     breakpoint()
    return out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state


def _flash_attn_backward(

    dout,

    q,

    k,

    v,

    out,

    softmax_lse,

    dq,

    dk,

    dv,

    dropout_p,

    softmax_scale,

    causal,

    window_size,

    alibi_slopes,

    deterministic,

    rng_state=None,

):
    maybe_contiguous = lambda x: x.contiguous() if x.stride(-1) != 1 else x
    # dq, dk, dv are allocated by us so they should already be contiguous
    dout, q, k, v, out = [maybe_contiguous(x) for x in (dout, q, k, v, out)]
    dq, dk, dv, softmax_d, = flash_attn_cuda.bwd(
        dout,
        q,
        k,
        v,
        out,
        softmax_lse,
        dq,
        dk,
        dv,
        alibi_slopes,
        dropout_p,
        softmax_scale,
        causal,
        window_size[0],
        window_size[1],
        deterministic,
        None,
        rng_state,
    )
    return dq, dk, dv, softmax_d


def _flash_attn_varlen_backward(

    dout,

    q,

    k,

    v,

    out,

    softmax_lse,

    dq,

    dk,

    dv,

    cu_seqlens_q,

    cu_seqlens_k,

    max_seqlen_q,

    max_seqlen_k,

    dropout_p,

    softmax_scale,

    causal,

    window_size,

    alibi_slopes,

    deterministic,

    rng_state=None,

):
    maybe_contiguous = lambda x: x.contiguous() if x.stride(-1) != 1 else x
    # dq, dk, dv are allocated by us so they should already be contiguous
    dout, q, k, v, out = [maybe_contiguous(x) for x in (dout, q, k, v, out)]
    dq, dk, dv, softmax_d, = flash_attn_cuda.varlen_bwd(
        dout,
        q,
        k,
        v,
        out,
        softmax_lse,
        dq,
        dk,
        dv,
        cu_seqlens_q,
        cu_seqlens_k,
        alibi_slopes,
        max_seqlen_q,
        max_seqlen_k,
        dropout_p,
        softmax_scale,
        False,
        causal,
        window_size[0],
        window_size[1],
        deterministic,
        None,
        rng_state,
    )
    # if dk.isnan().any() or dk.isnan().any() or dv.isnan().any() or softmax_d.isnan().any():
    #     breakpoint()
    return dq, dk, dv, softmax_d


class FlashAttnQKVPackedFunc(torch.autograd.Function):
    @staticmethod
    def forward(

        ctx,

        qkv,

        dropout_p,

        softmax_scale,

        causal,

        window_size,

        alibi_slopes,

        deterministic,

        return_softmax,

    ):
        if softmax_scale is None:
            softmax_scale = qkv.shape[-1] ** (-0.5)
        out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward(
            qkv[:, :, 0],
            qkv[:, :, 1],
            qkv[:, :, 2],
            dropout_p,
            softmax_scale,
            causal=causal,
            window_size=window_size,
            alibi_slopes=alibi_slopes,
            return_softmax=return_softmax and dropout_p > 0,
        )
        ctx.save_for_backward(q, k, v, out_padded, softmax_lse, rng_state)
        ctx.dropout_p = dropout_p
        ctx.softmax_scale = softmax_scale
        ctx.causal = causal
        ctx.window_size = window_size
        ctx.alibi_slopes = alibi_slopes
        ctx.deterministic = deterministic
        return out if not return_softmax else (out, softmax_lse, S_dmask)

    @staticmethod
    def backward(ctx, dout, *args):
        q, k, v, out, softmax_lse, rng_state = ctx.saved_tensors
        qkv_shape = q.shape[:-2] + (3, *q.shape[-2:])
        dqkv = torch.empty(qkv_shape, dtype=q.dtype, device=q.device)
        _flash_attn_backward(
            dout,
            q,
            k,
            v,
            out,
            softmax_lse,
            dqkv[:, :, 0],
            dqkv[:, :, 1],
            dqkv[:, :, 2],
            ctx.dropout_p,
            ctx.softmax_scale,
            ctx.causal,
            ctx.window_size,
            ctx.alibi_slopes,
            ctx.deterministic,
            rng_state=rng_state,
        )
        dqkv = dqkv[..., : dout.shape[-1]]  # We could have padded the head dimension
        return dqkv, None, None, None, None, None, None, None


class FlashAttnVarlenQKVPackedFunc(torch.autograd.Function):
    @staticmethod
    def forward(

        ctx,

        qkv,

        cu_seqlens,

        max_seqlen,

        dropout_p,

        softmax_scale,

        causal,

        window_size,

        alibi_slopes,

        deterministic,

        return_softmax,

    ):
        if softmax_scale is None:
            softmax_scale = qkv.shape[-1] ** (-0.5)
        out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_varlen_forward(
            qkv[:, 0],
            qkv[:, 1],
            qkv[:, 2],
            cu_seqlens,
            cu_seqlens,
            max_seqlen,
            max_seqlen,
            dropout_p,
            softmax_scale,
            causal=causal,
            window_size=window_size,
            alibi_slopes=alibi_slopes,
            return_softmax=return_softmax and dropout_p > 0,
            block_table=None,
        )
        ctx.save_for_backward(q, k, v, out_padded, softmax_lse, cu_seqlens, rng_state)
        ctx.dropout_p = dropout_p
        ctx.max_seqlen = max_seqlen
        ctx.softmax_scale = softmax_scale
        ctx.causal = causal
        ctx.window_size = window_size
        ctx.alibi_slopes = alibi_slopes
        ctx.deterministic = deterministic
        return out if not return_softmax else (out, softmax_lse, S_dmask)

    @staticmethod
    def backward(ctx, dout, *args):
        q, k, v, out, softmax_lse, cu_seqlens, rng_state = ctx.saved_tensors
        qkv_shape = q.shape[:-2] + (3, *q.shape[-2:])
        dqkv = torch.empty(qkv_shape, dtype=q.dtype, device=q.device)
        _flash_attn_varlen_backward(
            dout,
            q,
            k,
            v,
            out,
            softmax_lse,
            dqkv[:, 0],
            dqkv[:, 1],
            dqkv[:, 2],
            cu_seqlens,
            cu_seqlens,
            ctx.max_seqlen,
            ctx.max_seqlen,
            ctx.dropout_p,
            ctx.softmax_scale,
            ctx.causal,
            ctx.window_size,
            ctx.alibi_slopes,
            ctx.deterministic,
            rng_state=rng_state,
        )
        dqkv = dqkv[..., : dout.shape[-1]]  # We could have padded the head dimension
        return dqkv, None, None, None, None, None, None, None, None, None


class FlashAttnKVPackedFunc(torch.autograd.Function):
    @staticmethod
    def forward(

        ctx,

        q,

        kv,

        dropout_p,

        softmax_scale,

        causal,

        window_size,

        alibi_slopes,

        deterministic,

        return_softmax,

    ):
        if softmax_scale is None:
            softmax_scale = q.shape[-1] ** (-0.5)
        out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward(
            q,
            kv[:, :, 0],
            kv[:, :, 1],
            dropout_p,
            softmax_scale,
            causal=causal,
            window_size=window_size,
            alibi_slopes=alibi_slopes,
            return_softmax=return_softmax and dropout_p > 0,
        )
        ctx.save_for_backward(q, k, v, out_padded, softmax_lse, rng_state)
        ctx.dropout_p = dropout_p
        ctx.softmax_scale = softmax_scale
        ctx.causal = causal
        ctx.window_size = window_size
        ctx.alibi_slopes = alibi_slopes
        ctx.deterministic = deterministic
        return out if not return_softmax else (out, softmax_lse, S_dmask)

    @staticmethod
    def backward(ctx, dout, *args):
        q, k, v, out, softmax_lse, rng_state = ctx.saved_tensors
        dq = torch.empty_like(q)
        kv_shape = k.shape[:-2] + (2, *k.shape[-2:])
        dkv = torch.empty(kv_shape, dtype=k.dtype, device=k.device)
        _flash_attn_backward(
            dout,
            q,
            k,
            v,
            out,
            softmax_lse,
            dq,
            dkv[:, :, 0],
            dkv[:, :, 1],
            ctx.dropout_p,
            ctx.softmax_scale,
            ctx.causal,
            ctx.window_size,
            ctx.alibi_slopes,
            ctx.deterministic,
            rng_state=rng_state,
        )
        dq = dq[..., : dout.shape[-1]]  # We could have padded the head dimension
        dkv = dkv[..., : dout.shape[-1]]
        return dq, dkv, None, None, None, None, None, None, None


class FlashAttnVarlenKVPackedFunc(torch.autograd.Function):
    @staticmethod
    def forward(

        ctx,

        q,

        kv,

        cu_seqlens_q,

        cu_seqlens_k,

        max_seqlen_q,

        max_seqlen_k,

        dropout_p,

        softmax_scale,

        causal,

        window_size,

        alibi_slopes,

        deterministic,

        return_softmax,

    ):
        if softmax_scale is None:
            softmax_scale = q.shape[-1] ** (-0.5)
        out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_varlen_forward(
            q,
            kv[:, 0],
            kv[:, 1],
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            dropout_p,
            softmax_scale,
            causal=causal,
            window_size=window_size,
            alibi_slopes=alibi_slopes,
            return_softmax=return_softmax and dropout_p > 0,
            block_table=None,
        )
        ctx.save_for_backward(
            q, k, v, out_padded, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state
        )
        ctx.dropout_p = dropout_p
        ctx.max_seqlen_q = max_seqlen_q
        ctx.max_seqlen_k = max_seqlen_k
        ctx.softmax_scale = softmax_scale
        ctx.causal = causal
        ctx.window_size = window_size
        ctx.alibi_slopes = alibi_slopes
        ctx.deterministic = deterministic
        return out if not return_softmax else (out, softmax_lse, S_dmask)

    @staticmethod
    def backward(ctx, dout, *args):
        q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state = ctx.saved_tensors
        dq = torch.empty_like(q)
        kv_shape = k.shape[:-2] + (2, *k.shape[-2:])
        dkv = torch.empty(kv_shape, dtype=k.dtype, device=k.device)
        _flash_attn_varlen_backward(
            dout,
            q,
            k,
            v,
            out,
            softmax_lse,
            dq,
            dkv[:, 0],
            dkv[:, 1],
            cu_seqlens_q,
            cu_seqlens_k,
            ctx.max_seqlen_q,
            ctx.max_seqlen_k,
            ctx.dropout_p,
            ctx.softmax_scale,
            ctx.causal,
            ctx.window_size,
            ctx.alibi_slopes,
            ctx.deterministic,
            rng_state=rng_state,
        )
        dq = dq[..., : dout.shape[-1]]  # We could have padded the head dimension
        dkv = dkv[..., : dout.shape[-1]]
        return dq, dkv, None, None, None, None, None, None, None, None, None, None, None


class FlashAttnFunc(torch.autograd.Function):
    @staticmethod
    def forward(

        ctx,

        q,

        k,

        v,

        dropout_p,

        softmax_scale,

        causal,

        window_size,

        alibi_slopes,

        deterministic,

        return_softmax,

    ):
        if softmax_scale is None:
            softmax_scale = q.shape[-1] ** (-0.5)
        out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward(
            q,
            k,
            v,
            dropout_p,
            softmax_scale,
            causal=causal,
            window_size=window_size,
            alibi_slopes=alibi_slopes,
            return_softmax=return_softmax and dropout_p > 0,
        )
        ctx.save_for_backward(q, k, v, out_padded, softmax_lse, rng_state)
        ctx.dropout_p = dropout_p
        ctx.softmax_scale = softmax_scale
        ctx.causal = causal
        ctx.window_size = window_size
        ctx.alibi_slopes = alibi_slopes
        ctx.deterministic = deterministic
        return out if not return_softmax else (out, softmax_lse, S_dmask)

    @staticmethod
    def backward(ctx, dout, *args):
        q, k, v, out, softmax_lse, rng_state = ctx.saved_tensors
        dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
        _flash_attn_backward(
            dout,
            q,
            k,
            v,
            out,
            softmax_lse,
            dq,
            dk,
            dv,
            ctx.dropout_p,
            ctx.softmax_scale,
            ctx.causal,
            ctx.window_size,
            ctx.alibi_slopes,
            ctx.deterministic,
            rng_state=rng_state,
        )
        dq = dq[..., : dout.shape[-1]]  # We could have padded the head dimension
        dk = dk[..., : dout.shape[-1]]
        dv = dv[..., : dout.shape[-1]]
        return dq, dk, dv, None, None, None, None, None, None, None


class FlashAttnVarlenFunc(torch.autograd.Function):
    @staticmethod
    def forward(

        ctx,

        q,

        k,

        v,

        cu_seqlens_q,

        cu_seqlens_k,

        max_seqlen_q,

        max_seqlen_k,

        dropout_p,

        softmax_scale,

        causal,

        window_size,

        alibi_slopes,

        deterministic,

        return_softmax,

        block_table,

    ):
        if softmax_scale is None:
            softmax_scale = q.shape[-1] ** (-0.5)
        out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_varlen_forward(
            q,
            k,
            v,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            dropout_p,
            softmax_scale,
            causal=causal,
            window_size=window_size,
            alibi_slopes=alibi_slopes,
            return_softmax=return_softmax and dropout_p > 0,
            block_table=block_table,
        )
        ctx.save_for_backward(
            q, k, v, out_padded, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state
        )
        ctx.dropout_p = dropout_p
        ctx.max_seqlen_q = max_seqlen_q
        ctx.max_seqlen_k = max_seqlen_k
        ctx.softmax_scale = softmax_scale
        ctx.causal = causal
        ctx.window_size = window_size
        ctx.alibi_slopes = alibi_slopes
        ctx.deterministic = deterministic
        return out if not return_softmax else (out, softmax_lse, S_dmask)

    @staticmethod
    def backward(ctx, dout, *args):
        q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state = ctx.saved_tensors
        dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
        _flash_attn_varlen_backward(
            dout,
            q,
            k,
            v,
            out,
            softmax_lse,
            dq,
            dk,
            dv,
            cu_seqlens_q,
            cu_seqlens_k,
            ctx.max_seqlen_q,
            ctx.max_seqlen_k,
            ctx.dropout_p,
            ctx.softmax_scale,
            ctx.causal,
            ctx.window_size,
            ctx.alibi_slopes,
            ctx.deterministic,
            rng_state=rng_state,
        )
        dq = dq[..., : dout.shape[-1]]  # We could have padded the head dimension
        dk = dk[..., : dout.shape[-1]]
        dv = dv[..., : dout.shape[-1]]
        return dq, dk, dv, None, None, None, None, None, None, None, None, None, None, None, None


def flash_attn_qkvpacked_func(

    qkv,

    dropout_p=0.0,

    softmax_scale=None,

    causal=False,

    window_size=(-1, -1),  # -1 means infinite context window

    alibi_slopes=None,

    deterministic=False,

    return_attn_probs=False,

):
    """dropout_p should be set to 0.0 during evaluation

    If Q, K, V are already stacked into 1 tensor, this function will be faster than

    calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation

    of the gradients of Q, K, V.

    For multi-query and grouped-query attention (MQA/GQA), please see

    flash_attn_kvpacked_func and flash_attn_func.



    If window_size != (-1, -1), implements sliding window local attention. Query at position i

    will only attend to keys between [i - window_size[0], i + window_size[1]] inclusive.



    Arguments:

        qkv: (batch_size, seqlen, 3, nheads, headdim)

        dropout_p: float. Dropout probability.

        softmax_scale: float. The scaling of QK^T before applying softmax.

            Default to 1 / sqrt(headdim).

        causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).

        window_size: (left, right). If not (-1, -1), implements sliding window local attention.

        alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of (-alibi_slope * |i - j|) is added to

            the attention score of query i and key j.

        deterministic: bool. Whether to use the deterministic implementation of the backward pass,

            which is slightly slower and uses more memory. The forward pass is always deterministic.

        return_attn_probs: bool. Whether to return the attention probabilities. This option is for

           testing only. The returned probabilities are not guaranteed to be correct

           (they might not have the right scaling).

    Return:

        out: (batch_size, seqlen, nheads, headdim).

        softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The

            logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax

            normalization factor).

        S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).

            The output of softmax (possibly with different scaling). It also encodes the dropout

            pattern (negative means that location was dropped, nonnegative means it was kept).

    """
    return FlashAttnQKVPackedFunc.apply(
        qkv,
        dropout_p,
        softmax_scale,
        causal,
        window_size,
        alibi_slopes,
        deterministic,
        return_attn_probs,
    )


def flash_attn_kvpacked_func(

    q,

    kv,

    dropout_p=0.0,

    softmax_scale=None,

    causal=False,

    window_size=(-1, -1),  # -1 means infinite context window

    alibi_slopes=None,

    deterministic=False,

    return_attn_probs=False,

):
    """dropout_p should be set to 0.0 during evaluation

    If K, V are already stacked into 1 tensor, this function will be faster than

    calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation

    of the gradients of K, V.

    Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads

    than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.

    For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head

    0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.



    If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.

    For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:

        1 1 1 1 0

        1 1 1 1 1

    If seqlen_q = 5 and seqlen_k = 2, the causal mask is:

        0 0

        0 0

        0 0

        1 0

        1 1

    If the row of the mask is all zero, the output will be zero.



    If window_size != (-1, -1), implements sliding window local attention. Query at position i

    will only attend to keys between

    [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.



    Arguments:

        q: (batch_size, seqlen, nheads, headdim)

        kv: (batch_size, seqlen, 2, nheads_k, headdim)

        dropout_p: float. Dropout probability.

        softmax_scale: float. The scaling of QK^T before applying softmax.

            Default to 1 / sqrt(headdim).

        causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).

        window_size: (left, right). If not (-1, -1), implements sliding window local attention.

        alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of

            (-alibi_slope * |i + seqlen_k - seqlen_q - j|)

            is added to the attention score of query i and key j.

        deterministic: bool. Whether to use the deterministic implementation of the backward pass,

            which is slightly slower and uses more memory. The forward pass is always deterministic.

        return_attn_probs: bool. Whether to return the attention probabilities. This option is for

           testing only. The returned probabilities are not guaranteed to be correct

           (they might not have the right scaling).

    Return:

        out: (batch_size, seqlen, nheads, headdim).

        softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The

            logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax

            normalization factor).

        S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).

            The output of softmax (possibly with different scaling). It also encodes the dropout

            pattern (negative means that location was dropped, nonnegative means it was kept).

    """
    return FlashAttnKVPackedFunc.apply(
        q,
        kv,
        dropout_p,
        softmax_scale,
        causal,
        window_size,
        alibi_slopes,
        deterministic,
        return_attn_probs,
    )


def flash_attn_func(

    q,

    k,

    v,

    dropout_p=0.0,

    softmax_scale=None,

    causal=False,

    window_size=(-1, -1),  # -1 means infinite context window

    alibi_slopes=None,

    deterministic=False,

    return_attn_probs=False,

):
    """dropout_p should be set to 0.0 during evaluation

    Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads

    than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.

    For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head

    0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.



    If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.

    For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:

        1 1 1 1 0

        1 1 1 1 1

    If seqlen_q = 5 and seqlen_k = 2, the causal mask is:

        0 0

        0 0

        0 0

        1 0

        1 1

    If the row of the mask is all zero, the output will be zero.



    If window_size != (-1, -1), implements sliding window local attention. Query at position i

    will only attend to keys between

    [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.



    Arguments:

        q: (batch_size, seqlen, nheads, headdim)

        k: (batch_size, seqlen, nheads_k, headdim)

        v: (batch_size, seqlen, nheads_k, headdim)

        dropout_p: float. Dropout probability.

        softmax_scale: float. The scaling of QK^T before applying softmax.

            Default to 1 / sqrt(headdim).

        causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).

        window_size: (left, right). If not (-1, -1), implements sliding window local attention.

        alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of

            (-alibi_slope * |i + seqlen_k - seqlen_q - j|)

            is added to the attention score of query i and key j.

        deterministic: bool. Whether to use the deterministic implementation of the backward pass,

            which is slightly slower and uses more memory. The forward pass is always deterministic.

        return_attn_probs: bool. Whether to return the attention probabilities. This option is for

           testing only. The returned probabilities are not guaranteed to be correct

           (they might not have the right scaling).

    Return:

        out: (batch_size, seqlen, nheads, headdim).

        softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The

            logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax

            normalization factor).

        S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).

            The output of softmax (possibly with different scaling). It also encodes the dropout

            pattern (negative means that location was dropped, nonnegative means it was kept).

    """
    return FlashAttnFunc.apply(
        q,
        k,
        v,
        dropout_p,
        softmax_scale,
        causal,
        window_size,
        alibi_slopes,
        deterministic,
        return_attn_probs,
    )


def flash_attn_varlen_qkvpacked_func(

    qkv,

    cu_seqlens,

    max_seqlen,

    dropout_p=0.0,

    softmax_scale=None,

    causal=False,

    window_size=(-1, -1),  # -1 means infinite context window

    alibi_slopes=None,

    deterministic=False,

    return_attn_probs=False,

):
    """dropout_p should be set to 0.0 during evaluation

    If Q, K, V are already stacked into 1 tensor, this function will be faster than

    calling flash_attn_varlen_func on Q, K, V since the backward pass avoids explicit concatenation

    of the gradients of Q, K, V.

    For multi-query and grouped-query attention (MQA/GQA), please see

    flash_attn_varlen_kvpacked_func and flash_attn_varlen_func.



    If window_size != (-1, -1), implements sliding window local attention. Query at position i

    will only attend to keys between [i - window_size[0], i + window_size[1]] inclusive.



    Arguments:

        qkv: (total, 3, nheads, headdim), where total = total number of tokens in the batch.

        cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths

           of the sequences in the batch, used to index into qkv.

        max_seqlen: int. Maximum sequence length in the batch.

        dropout_p: float. Dropout probability.

        softmax_scale: float. The scaling of QK^T before applying softmax.

            Default to 1 / sqrt(headdim).

        causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).

        window_size: (left, right). If not (-1, -1), implements sliding window local attention.

        alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of (-alibi_slope * |i - j|)

            is added to the attention score of query i and key j.

        deterministic: bool. Whether to use the deterministic implementation of the backward pass,

            which is slightly slower and uses more memory. The forward pass is always deterministic.

        return_attn_probs: bool. Whether to return the attention probabilities. This option is for

           testing only. The returned probabilities are not guaranteed to be correct

           (they might not have the right scaling).

    Return:

        out: (total, nheads, headdim).

        softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The

            logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax

            normalization factor).

        S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).

            The output of softmax (possibly with different scaling). It also encodes the dropout

            pattern (negative means that location was dropped, nonnegative means it was kept).

    """
    return FlashAttnVarlenQKVPackedFunc.apply(
        qkv,
        cu_seqlens,
        max_seqlen,
        dropout_p,
        softmax_scale,
        causal,
        window_size,
        alibi_slopes,
        deterministic,
        return_attn_probs,
    )


def flash_attn_varlen_kvpacked_func(

    q,

    kv,

    cu_seqlens_q,

    cu_seqlens_k,

    max_seqlen_q,

    max_seqlen_k,

    dropout_p=0.0,

    softmax_scale=None,

    causal=False,

    window_size=(-1, -1),  # -1 means infinite context window

    alibi_slopes=None,

    deterministic=False,

    return_attn_probs=False,

):
    """dropout_p should be set to 0.0 during evaluation

    If K, V are already stacked into 1 tensor, this function will be faster than

    calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation

    of the gradients of K, V.

    Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads

    than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.

    For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head

    0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.



    If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.

    For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:

        1 1 1 1 0

        1 1 1 1 1

    If seqlen_q = 5 and seqlen_k = 2, the causal mask is:

        0 0

        0 0

        0 0

        1 0

        1 1

    If the row of the mask is all zero, the output will be zero.



    If window_size != (-1, -1), implements sliding window local attention. Query at position i

    will only attend to keys between

    [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.



    Arguments:

        q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch.

        kv: (total_k, 2, nheads_k, headdim), where total_k = total number of key tokens in the batch.

        cu_seqlens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths

           of the sequences in the batch, used to index into q.

        cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths

           of the sequences in the batch, used to index into kv.

        max_seqlen_q: int. Maximum query sequence length in the batch.

        max_seqlen_k: int. Maximum key sequence length in the batch.

        dropout_p: float. Dropout probability.

        softmax_scale: float. The scaling of QK^T before applying softmax.

            Default to 1 / sqrt(headdim).

        causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).

        window_size: (left, right). If not (-1, -1), implements sliding window local attention.

        alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of

            (-alibi_slope * |i + seqlen_k - seqlen_q - j|)

            is added to the attention score of query i and key j.

        deterministic: bool. Whether to use the deterministic implementation of the backward pass,

            which is slightly slower and uses more memory. The forward pass is always deterministic.

        return_attn_probs: bool. Whether to return the attention probabilities. This option is for

           testing only. The returned probabilities are not guaranteed to be correct

           (they might not have the right scaling).

    Return:

        out: (total, nheads, headdim).

        softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The

            logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax

            normalization factor).

        S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).

            The output of softmax (possibly with different scaling). It also encodes the dropout

            pattern (negative means that location was dropped, nonnegative means it was kept).

    """
    return FlashAttnVarlenKVPackedFunc.apply(
        q,
        kv,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        dropout_p,
        softmax_scale,
        causal,
        window_size,
        alibi_slopes,
        deterministic,
        return_attn_probs,
    )


def flash_attn_varlen_func(

    q,

    k,

    v,

    cu_seqlens_q,

    cu_seqlens_k,

    max_seqlen_q,

    max_seqlen_k,

    dropout_p=0.0,

    softmax_scale=None,

    causal=False,

    window_size=(-1, -1),  # -1 means infinite context window

    alibi_slopes=None,

    deterministic=False,

    return_attn_probs=False,

    block_table=None,

):
    """dropout_p should be set to 0.0 during evaluation

    Supports multi-query and grouped-query attention (MQA/GQA) by passing in K, V with fewer heads

    than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.

    For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head

    0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.



    If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.

    For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:

        1 1 1 1 0

        1 1 1 1 1

    If seqlen_q = 5 and seqlen_k = 2, the causal mask is:

        0 0

        0 0

        0 0

        1 0

        1 1

    If the row of the mask is all zero, the output will be zero.



    If window_size != (-1, -1), implements sliding window local attention. Query at position i

    will only attend to keys between

    [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.



    Arguments:

        q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch.

        k: (total_k, nheads_k, headdim), where total_k = total number of key tokens in the batch.

        v: (total_k, nheads_k, headdim), where total_k = total number of key tokens in the batch.

        cu_seqlens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths

           of the sequences in the batch, used to index into q.

        cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths

           of the sequences in the batch, used to index into kv.

        max_seqlen_q: int. Maximum query sequence length in the batch.

        max_seqlen_k: int. Maximum key sequence length in the batch.

        dropout_p: float. Dropout probability.

        softmax_scale: float. The scaling of QK^T before applying softmax.

            Default to 1 / sqrt(headdim).

        causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).

        window_size: (left, right). If not (-1, -1), implements sliding window local attention.

        alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of

            (-alibi_slope * |i + seqlen_k - seqlen_q - j|)

            is added to the attention score of query i and key j.

        deterministic: bool. Whether to use the deterministic implementation of the backward pass,

            which is slightly slower and uses more memory. The forward pass is always deterministic.

        return_attn_probs: bool. Whether to return the attention probabilities. This option is for

           testing only. The returned probabilities are not guaranteed to be correct

           (they might not have the right scaling).

    Return:

        out: (total, nheads, headdim).

        softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The

            logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax

            normalization factor).

        S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).

            The output of softmax (possibly with different scaling). It also encodes the dropout

            pattern (negative means that location was dropped, nonnegative means it was kept).

    """
    return FlashAttnVarlenFunc.apply(
        q,
        k,
        v,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        dropout_p,
        softmax_scale,
        causal,
        window_size,
        alibi_slopes,
        deterministic,
        return_attn_probs,
        block_table,
    )


def flash_attn_with_kvcache(

    q,

    k_cache,

    v_cache,

    k=None,

    v=None,

    rotary_cos=None,

    rotary_sin=None,

    cache_seqlens: Optional[Union[(int, torch.Tensor)]] = None,

    cache_batch_idx: Optional[torch.Tensor] = None,

    block_table: Optional[torch.Tensor] = None,

    softmax_scale=None,

    causal=False,

    window_size=(-1, -1),  # -1 means infinite context window

    rotary_interleaved=True,

    alibi_slopes=None,

    num_splits=0,

):
    """

    If k and v are not None, k_cache and v_cache will be updated *inplace* with the new values from

    k and v. This is useful for incremental decoding: you can pass in the cached keys/values from

    the previous step, and update them with the new keys/values from the current step, and do

    attention with the updated cache, all in 1 kernel.



    If you pass in k / v, you must make sure that the cache is large enough to hold the new values.

    For example, the KV cache could be pre-allocated with the max sequence length, and you can use

    cache_seqlens to keep track of the current sequence lengths of each sequence in the batch.



    Also apply rotary embedding if rotary_cos and rotary_sin are passed in. The key @k will be

    rotated by rotary_cos and rotary_sin at indices cache_seqlens, cache_seqlens + 1, etc.

    If causal or local (i.e., window_size != (-1, -1)), the query @q will be rotated by rotary_cos

    and rotary_sin at indices cache_seqlens, cache_seqlens + 1, etc.

    If not causal and not local, the query @q will be rotated by rotary_cos and rotary_sin at

    indices cache_seqlens only (i.e. we consider all tokens in @q to be at position cache_seqlens).



    See tests/test_flash_attn.py::test_flash_attn_kvcache for examples of how to use this function.



    Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads

    than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.

    For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head

    0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.



    If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.

    For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:

        1 1 1 1 0

        1 1 1 1 1

    If seqlen_q = 5 and seqlen_k = 2, the causal mask is:

        0 0

        0 0

        0 0

        1 0

        1 1

    If the row of the mask is all zero, the output will be zero.



    If window_size != (-1, -1), implements sliding window local attention. Query at position i

    will only attend to keys between

    [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.



    Note: Does not support backward pass.



    Arguments:

        q: (batch_size, seqlen, nheads, headdim)

        k_cache: (batch_size_cache, seqlen_cache, nheads_k, headdim) if there's no block_table,

            or (num_blocks, page_block_size, nheads_k, headdim) if there's a block_table (i.e. paged KV cache)

            page_block_size must be a multiple of 256.

        v_cache: (batch_size_cache, seqlen_cache, nheads_k, headdim) if there's no block_table,

            or (num_blocks, page_block_size, nheads_k, headdim) if there's a block_table (i.e. paged KV cache)

        k [optional]: (batch_size, seqlen_new, nheads_k, headdim). If not None, we concatenate

            k with k_cache, starting at the indices specified by cache_seqlens.

        v [optional]: (batch_size, seqlen_new, nheads_k, headdim). Similar to k.

        rotary_cos [optional]: (seqlen_ro, rotary_dim / 2). If not None, we apply rotary embedding

            to k and q. Only applicable if k and v are passed in. rotary_dim must be divisible by 16.

        rotary_sin [optional]: (seqlen_ro, rotary_dim / 2). Similar to rotary_cos.

        cache_seqlens: int, or (batch_size,), dtype torch.int32. The sequence lengths of the

            KV cache.

        block_table [optional]: (batch_size, max_num_blocks_per_seq), dtype torch.int32.

        cache_batch_idx: (batch_size,), dtype torch.int32. The indices used to index into the KV cache.

            If None, we assume that the batch indices are [0, 1, 2, ..., batch_size - 1].

            If the indices are not distinct, and k and v are provided, the values updated in the cache

                 might come from any of the duplicate indices.

        softmax_scale: float. The scaling of QK^T before applying softmax.

            Default to 1 / sqrt(headdim).

        causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).

        window_size: (left, right). If not (-1, -1), implements sliding window local attention.

        rotary_interleaved: bool. Only applicable if rotary_cos and rotary_sin are passed in.

            If True, rotary embedding will combine dimensions 0 & 1, 2 & 3, etc. If False,

            rotary embedding will combine dimensions 0 & rotary_dim / 2, 1 & rotary_dim / 2 + 1

            (i.e. GPT-NeoX style).

        alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of

            (-alibi_slope * |i + seqlen_k - seqlen_q - j|)

            is added to the attention score of query i and key j.

        num_splits: int. If > 1, split the key/value into this many chunks along the sequence.

           If num_splits == 1, we don't split the key/value. If num_splits == 0, we use a heuristic

           to automatically determine the number of splits.

           Don't change this unless you know what you are doing.



    Return:

        out: (batch_size, seqlen, nheads, headdim).

    """
    assert k_cache.stride(-1) == 1, "k_cache must have contiguous last dimension"
    assert v_cache.stride(-1) == 1, "v_cache must have contiguous last dimension"
    maybe_contiguous = lambda x: x.contiguous() if x is not None and x.stride(-1) != 1 else x
    q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
    if softmax_scale is None:
        softmax_scale = q.shape[-1] ** (-0.5)
    if cache_seqlens is not None and isinstance(cache_seqlens, int):
        cache_seqlens = torch.full(
            (k_cache.shape[0],), cache_seqlens, dtype=torch.int32, device=k_cache.device
        )
        cache_seqlens = maybe_contiguous(cache_seqlens)
    cache_batch_idx = maybe_contiguous(cache_batch_idx)
    block_table = maybe_contiguous(block_table)
    out, softmax_lse = flash_attn_cuda.fwd_kvcache(
        q,
        k_cache,
        v_cache,
        k,
        v,
        cache_seqlens,
        rotary_cos,
        rotary_sin,
        cache_batch_idx,
        block_table,
        alibi_slopes,
        None,
        softmax_scale,
        causal,
        window_size[0],
        window_size[1],
        rotary_interleaved,
        num_splits,
    )
    return out