File size: 4,162 Bytes
e45d058
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# Copyright (c) 2022, Tri Dao.
# Adapted from https://github.com/NVIDIA/apex/blob/master/apex/contrib/layer_norm/layer_norm.py

import torch
from torch.nn import init

from flash_attn.ops.layer_norm import (
    DropoutAddLayerNormFn,
    DropoutAddLayerNormParallelResidualFn,
    DropoutAddLayerNormSubsetFn,
)


def rms_norm(x, weight, epsilon):
    return DropoutAddLayerNormFn.apply(
        x, None, weight, None, None, None, 0.0, epsilon, False, False, True
    )


def dropout_add_rms_norm(

    x0,

    residual,

    weight,

    bias,

    dropout_p,

    epsilon,

    rowscale=None,

    layerscale=None,

    prenorm=False,

    residual_in_fp32=False,

    return_dropout_mask=False,

):
    """residual_in_fp32 only has an effect if residual is None.

    Otherwise residual dtype is residual.dtype.

    """
    return DropoutAddLayerNormFn.apply(
        x0,
        residual,
        weight,
        bias,
        rowscale,
        layerscale,
        dropout_p,
        epsilon,
        residual_in_fp32,
        prenorm,
        True,
        return_dropout_mask,
    )


def dropout_add_rms_norm_subset(

    x0,

    residual,

    weight,

    bias,

    dropout_p,

    epsilon,

    layerscale=None,

    x0_subset=None,

    out_subset=None,

    rowscale_const=1.0,

    out_numrows=0,

    prenorm=False,

    residual_in_fp32=False,

    return_dropout_mask=False,

):
    """residual_in_fp32 only has an effect if residual is None.

    Otherwise residual dtype is residual.dtype.

    """
    return DropoutAddLayerNormSubsetFn.apply(
        x0,
        residual,
        weight,
        bias,
        layerscale,
        x0_subset,
        out_subset,
        dropout_p,
        epsilon,
        rowscale_const,
        out_numrows,
        residual_in_fp32,
        prenorm,
        True,
        return_dropout_mask,
    )


def dropout_add_rms_norm_parallel_residual(

    x0,

    x1,

    residual,

    weight0,

    bias0,

    weight1,

    bias1,

    dropout_p,

    epsilon,

    prenorm=False,

    residual_in_fp32=False,

    return_dropout_mask=False,

):
    """residual_in_fp32 only has an effect if residual is None.

    Otherwise residual dtype is residual.dtype.

    """
    return DropoutAddLayerNormParallelResidualFn.apply(
        x0,
        x1,
        residual,
        weight0,
        bias0,
        weight1,
        bias1,
        dropout_p,
        epsilon,
        residual_in_fp32,
        prenorm,
        True,
        return_dropout_mask,
    )


class RMSNorm(torch.nn.Module):
    def __init__(self, hidden_size, eps=1e-5, device=None, dtype=None):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.eps = eps
        self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
        self.register_parameter("bias", None)
        self.reset_parameters()

    def reset_parameters(self):
        init.ones_(self.weight)

    def forward(self, x):
        return rms_norm(x, self.weight, self.eps)


class DropoutAddRMSNorm(torch.nn.Module):
    def __init__(

        self,

        hidden_size,

        prenorm=False,

        p=0.0,

        eps=1e-5,

        residual_in_fp32=False,

        device=None,

        dtype=None,

    ):
        factory_kwargs = {"device": device, "dtype": dtype}
        super().__init__()
        self.prenorm = prenorm
        self.p = p
        self.eps = eps
        self.residual_in_fp32 = residual_in_fp32
        self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
        self.register_parameter("bias", None)
        self.reset_parameters()

    def reset_parameters(self):
        init.ones_(self.weight)

    def forward(self, x0, residual=None):
        return dropout_add_rms_norm(
            x0,
            residual,
            self.weight,
            None,
            self.p if self.training else 0.0,
            self.eps,
            prenorm=self.prenorm,
            residual_in_fp32=self.residual_in_fp32,
        )