import streamlit as st from llama_cpp import Llama # Initialize the model llm = Llama.from_pretrained( repo_id="Divyansh12/check", filename="unsloth.F16.gguf", # Ensure this matches your model file name verbose=True, n_ctx=32768, n_threads=2, chat_format="chatml" ) # Define the function to get responses from the model def respond(message, history, system_message, max_tokens, temperature, top_p): messages = [{"role": "system", "content": system_message}] for user_message, assistant_message in history: if user_message: messages.append({"role": "user", "content": user_message}) if assistant_message: messages.append({"role": "assistant", "content": assistant_message}) messages.append({"role": "user", "content": message}) response = "" # Stream the response from the model response_stream = llm.create_chat_completion( messages=messages, stream=True, max_tokens=max_tokens, temperature=temperature, top_p=top_p ) for chunk in response_stream: if len(chunk['choices'][0]["delta"]) != 0 and "content" in chunk['choices'][0]["delta"]: response += chunk['choices'][0]["delta"]["content"] yield response # Streamlit UI st.title("Chatbot Application") st.write("### Interact with the chatbot!") # User input fields system_message = st.text_input("System Message", value="You are a friendly Chatbot.") user_message = st.text_area("Your Message:") max_tokens = st.slider("Max New Tokens", min_value=1, max_value=2048, value=512) temperature = st.slider("Temperature", min_value=0.1, max_value=4.0, value=0.7) top_p = st.slider("Top-p (Nucleus Sampling)", min_value=0.1, max_value=1.0, value=0.95) # Chat history if 'history' not in st.session_state: st.session_state.history = [] if st.button("Send"): # Get the response from the model response = respond(user_message, st.session_state.history, system_message, max_tokens, temperature, top_p) # Add user message and model response to history st.session_state.history.append((user_message, response)) # Display the chat history st.write("### Chat History") for user_msg, assistant_msg in st.session_state.history: st.write(f"**User:** {user_msg}") st.write(f"**Assistant:** {assistant_msg}")