import streamlit as st from llama_cpp import Llama from huggingface_hub import snapshot_download import os st.title("GGUF Model Streamlit App") st.write("Downloading the model...") repo_id = "Divyansh12/check" model_dir = "model" # Download the model if not os.path.exists(model_dir): snapshot_download(repo_id=repo_id, cache_dir=model_dir) st.write("Model downloaded successfully!") # List downloaded files for debugging for root, dirs, files in os.walk(model_dir): st.write(f"Files in {root}: {files}") # Update this path based on the actual file structure found model_path = "model/models--Divyansh12--check/unsloth.F16.gguf" if not os.path.exists(model_path): st.error(f"Model file not found at {model_path}") else: st.write(f"Found model file at {model_path}") llm = Llama.from_pretrained(model_path=model_path) st.write("Model loaded successfully!") # Example query response = llm.create_chat_completion( messages=[ {"role": "user", "content": "What is the capital of France?"} ] ) st.write("Response:", response)