Spaces:
Running
Running
import streamlit as st | |
from llama_cpp import Llama | |
# Initialize the model | |
llm = Llama.from_pretrained( | |
repo_id="Divyansh12/check", | |
filename="unsloth.F16.gguf", # Ensure this matches your model file name | |
verbose=True, | |
n_ctx=32768, | |
n_threads=2, | |
chat_format="chatml" | |
) | |
# Define the function to get responses from the model | |
def respond(message, history, system_message, max_tokens, temperature, top_p): | |
messages = [{"role": "system", "content": system_message}] | |
for user_message, assistant_message in history: | |
if user_message: | |
messages.append({"role": "user", "content": user_message}) | |
if assistant_message: | |
messages.append({"role": "assistant", "content": assistant_message}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
# Stream the response from the model | |
response_stream = llm.create_chat_completion( | |
messages=messages, | |
stream=True, | |
max_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p | |
) | |
for chunk in response_stream: | |
if len(chunk['choices'][0]["delta"]) != 0 and "content" in chunk['choices'][0]["delta"]: | |
response += chunk['choices'][0]["delta"]["content"] | |
yield response | |
# Streamlit UI | |
st.title("Chatbot Application") | |
st.write("### Interact with the chatbot!") | |
# User input fields | |
system_message = st.text_input("System Message", value="You are a friendly Chatbot.") | |
user_message = st.text_area("Your Message:") | |
max_tokens = st.slider("Max New Tokens", min_value=1, max_value=2048, value=512) | |
temperature = st.slider("Temperature", min_value=0.1, max_value=4.0, value=0.7) | |
top_p = st.slider("Top-p (Nucleus Sampling)", min_value=0.1, max_value=1.0, value=0.95) | |
# Chat history | |
if 'history' not in st.session_state: | |
st.session_state.history = [] | |
if st.button("Send"): | |
# Get the response from the model | |
response = respond(user_message, st.session_state.history, system_message, max_tokens, temperature, top_p) | |
# Add user message and model response to history | |
st.session_state.history.append((user_message, response)) | |
# Display the chat history | |
st.write("### Chat History") | |
for user_msg, assistant_msg in st.session_state.history: | |
st.write(f"**User:** {user_msg}") | |
st.write(f"**Assistant:** {assistant_msg}") | |