Spaces:
Sleeping
Sleeping
File size: 1,672 Bytes
ad7aaa9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import streamlit as st
from llama_cpp import Llama
from huggingface_hub import snapshot_download
import os
# Define the model repository and filename
repo_id = "Divyansh12/check"
filename = "unsloth.F16.gguf"
# Download the model if not already present
model_dir = "model"
if not os.path.exists(model_dir):
st.write("Downloading the model...")
snapshot_download(repo_id=repo_id, cache_dir=model_dir)
st.write("Model downloaded successfully!")
# Since the model file is directly inside the downloaded directory
# Find the exact file path
model_path = os.path.join(model_dir, filename)
# Check if the file exists at the specified location
if not os.path.exists(model_path):
st.error(f"Model file not found at {model_path}")
else:
st.write(f"Found model file at {model_path}")
# Load the GGUF model using llama-cpp
st.write("Loading the model...")
llm = Llama.from_pretrained(
model_path=model_path
)
st.write("Model loaded successfully!")
# Streamlit input for the user to enter a prompt
prompt = st.text_input("Enter your prompt:", "What is the capital of France?")
# Generate the response when a prompt is given
if st.button("Generate Response"):
with st.spinner("Generating..."):
response = llm.create_chat_completion(
messages=[
{
"role": "user",
"content": prompt
}
]
)
# Extract the message content from the response and display it
st.write("Response:")
st.write(response['choices'][0]['message']['content'])
|