from transformers import AutoModel, AutoTokenizer import streamlit as st from PIL import Image import re import os import uuid # Set the page layout to wide st.set_page_config(layout="wide") # Load the model and tokenizer only once @st.cache_resource def load_model(model_name): if model_name == "OCR for English or Hindi (CPU)": tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True) model = AutoModel.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id).eval() else: tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True) model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id).eval().to('cuda') return model, tokenizer if "model" not in st.session_state or "tokenizer" not in st.session_state: model, tokenizer = load_model("OCR for English or Hindi (CPU)") st.session_state.update({"model": model, "tokenizer": tokenizer}) # Function to run the GOT model for multilingual OCR def run_ocr(image, model, tokenizer): image_path = f"{uuid.uuid4()}.png" image.save(image_path) try: res = model.chat(tokenizer, image_path, ocr_type='ocr') return res if isinstance(res, str) else str(res) except Exception as e: return f"Error: {str(e)}" finally: os.remove(image_path) # Function to highlight keyword in text def highlight_text(text, search_term): return re.sub(re.escape(search_term), lambda m: f'{m.group()}', text, flags=re.IGNORECASE) if search_term else text # Streamlit App st.title(":blue[Optical Character Recognition Application]") st.write("upload image for ocr") # Create two columns col1, col2 = st.columns(2) # Left column - Display the uploaded image with col1: uploaded_image = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg"]) if uploaded_image: image = Image.open(uploaded_image) st.image(image, caption='Uploaded Image', use_column_width=True) # Right column - Model selection, options, and displaying extracted text with col2: model_option = st.selectbox("Select Model", ["OCR for English or Hindi (CPU)", "OCR for English (GPU)"]) if st.button("Run OCR"): if uploaded_image: with st.spinner("Processing..."): model, tokenizer = load_model(model_option) result_text = run_ocr(image, model, tokenizer) if "Error" not in result_text: st.session_state["extracted_text"] = result_text else: st.error(result_text) else: st.error("Please upload an image before running OCR.") # Display the extracted text if it exists in session state if "extracted_text" in st.session_state: search_term = st.text_input("Enter a word or phrase to highlight:") st.subheader("Extracted Text:") st.markdown(f'