OCR_Application / app.py
Divyansh12's picture
Update app.py
c1b0853 verified
from transformers import AutoModel, AutoTokenizer
import streamlit as st
from PIL import Image
import re
import os
import uuid
# Set the page layout to wide
st.set_page_config(layout="wide")
# Load the model and tokenizer only once
@st.cache_resource
def load_model(model_name):
if model_name == "OCR for English or Hindi (CPU)":
tokenizer = AutoTokenizer.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True)
model = AutoModel.from_pretrained('srimanth-d/GOT_CPU', trust_remote_code=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id).eval()
else:
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id).eval().to('cuda')
return model, tokenizer
if "model" not in st.session_state or "tokenizer" not in st.session_state:
model, tokenizer = load_model("OCR for English or Hindi (CPU)")
st.session_state.update({"model": model, "tokenizer": tokenizer})
# Function to run the GOT model for multilingual OCR
def run_ocr(image, model, tokenizer):
image_path = f"{uuid.uuid4()}.png"
image.save(image_path)
try:
res = model.chat(tokenizer, image_path, ocr_type='ocr')
return res if isinstance(res, str) else str(res)
except Exception as e:
return f"Error: {str(e)}"
finally:
os.remove(image_path)
# Function to highlight keyword in text
def highlight_text(text, search_term):
return re.sub(re.escape(search_term), lambda m: f'<span style="background-color: red;">{m.group()}</span>', text, flags=re.IGNORECASE) if search_term else text
# Streamlit App
st.title(":blue[Optical Character Recognition Application]")
st.write("upload image for ocr")
# Create two columns
col1, col2 = st.columns(2)
# Left column - Display the uploaded image
with col1:
uploaded_image = st.file_uploader("Upload Image", type=["png", "jpg", "jpeg"])
if uploaded_image:
image = Image.open(uploaded_image)
st.image(image, caption='Uploaded Image', use_column_width=True)
# Right column - Model selection, options, and displaying extracted text
with col2:
model_option = st.selectbox("Select Model", ["OCR for English or Hindi (CPU)", "OCR for English (GPU)"])
if st.button("Run OCR"):
if uploaded_image:
with st.spinner("Processing..."):
model, tokenizer = load_model(model_option)
result_text = run_ocr(image, model, tokenizer)
if "Error" not in result_text:
st.session_state["extracted_text"] = result_text
else:
st.error(result_text)
else:
st.error("Please upload an image before running OCR.")
# Display the extracted text if it exists in session state
if "extracted_text" in st.session_state:
search_term = st.text_input("Enter a word or phrase to highlight:")
st.subheader("Extracted Text:")
st.markdown(f'<div style="white-space: pre-wrap;">{highlight_text(st.session_state["extracted_text"], search_term)}</div>', unsafe_allow_html=True)