import nemo.collections.asr as nemo_asr import gradio as gr import pandas as pd asr_model = nemo_asr.models.EncDecCTCModelBPE.from_pretrained(model_name="stt_rw_conformer_ctc_large") df = pd.read_csv("amasaku_data.tsv",sep='\t') print(df) amasaku_mapping = {str(key).lower():str(val).lower() for key,val in zip(df.iloc[:,0],df.iloc[:,1])} def transcribe(file): #if not audio: # return {state_var: state, transcription_var: state} print("filename: ",file) transcription= asr_model.transcribe([file]) transcription = transcription.lower().split() transcribed_with_amasuku = [] for word in transcription[0]: transcribed_with_amasuku(amasaku_mapping.get(word,word)) transcribed_with_amasuku = " ".join(transcribed_with_amasuku) return transcription_with_amasaku.capitalize() with gr.Blocks() as demo: # state_var = gr.State("") with gr.Row(): with gr.Column(): uploaded_audio = gr.Audio(label="Upload Audio File", type="filepath") with gr.Column(): transcription = gr.Textbox(type="text", label="Transcription") with gr.Row(): transcribe_button = gr.Button("Transcribe") transcribe_button.click( transcribe, [uploaded_audio], transcription ) demo.launch()