File size: 25,984 Bytes
63d97d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
# coding: utf-8
import os
import gradio as gr
import random
import torch
import cv2
import re
import uuid
import json
import pickle
from PIL import Image, ImageDraw, ImageOps, ImageFont
import math
import numpy as np
import argparse
import inspect
import tempfile

from diffusers import StableDiffusionPipeline, StableDiffusionInpaintPipeline, StableDiffusionInstructPix2PixPipeline
from diffusers import EulerAncestralDiscreteScheduler, PNDMScheduler
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, DiffusionPipeline, UniPCMultistepScheduler
from diffusers import StableDiffusionXLPipeline, AutoPipelineForText2Image

from langchain.agents.initialize import initialize_agent
from langchain.agents.tools import Tool
from langchain.chains.conversation.memory import ConversationBufferMemory
from langchain.llms.openai import OpenAI
from langchain.llms import AzureOpenAI


from sentence_transformers import SentenceTransformer
from compel import Compel, ReturnedEmbeddingsType


PREFIX = """DiffusionGPT is designed to be able to assist users in generating high-quality images.

Human may provide some text prompts to DiffusionGPT. The input prompts will be analyzed by DiffusionGPT to select the most suitable generative model for generating images.

Overall, DiffusionGPT is a powerful image generation system that can assist in processing various forms of textual input and match them with the most suitable generative model to accomplish the generation task.

TOOLS:
------

DiffusionGPT  has access to the following tools:"""

FORMAT_INSTRUCTIONS = """To use a tool, please use the following format:

```
Thought: Do I need to use a tool? Yes
Action: the action to take, should be one of [{tool_names}]
Action Input: the input to the action
Observation: the result of the action
```

When you have a response to say to the Human, or if you do not need to use a tool, you MUST use the format:

```
Thought: Do I need to use a tool? No
{ai_prefix}: [your response here]
```
"""

SUFFIX = """You are very strict to the filename correctness and will never fake a file name if it does not exist.
You will remember to provide the image file name loyally if it's provided in the last tool observation.

Begin!

Previous conversation history:
{chat_history}

New input: {input}
DiffusionGPT must use tools to observe images rather than imagination.
The thoughts and observations are only visible for DiffusionGPT, DiffusionGPT should remember to repeat important information in the final response for Human. 
Thought: Do I need to use a tool? {agent_scratchpad} Let's think step by step.
"""

TOT_PROMPTS = """Identify and behave as five different experts that are appropriate to select one element from the input list that best matches the input prompt. 
All experts will write down the selection result, then share it with the group. 

You then analyze all 5 analyses and output the consensus selected element or your best guess matched element. 
The final selection output MUST be the same as the TEMPLATE:
TEMPLATE:
```
Selected: [the selected word]
```

Input list: {search_list}

Input prompt: {input}
"""


PROMPT_PARSE_PROMPTS = """Given the user input text.
Please judge the paradigm of the input text, and then recognize the main string of text prompts according to the corresponding form. 
The output must be same as the TEMPlATE:

TEMPLATE:
```
Prompts: [the output prompts]
```

For instance:
1. Input: A dog
   Prompts: A dog 
2. Input: generate an image of a dog
   Prompts: an image of a dog
3. Input: I want to see a beach
   Prompts: a beach
4. Input: If you give me a toy, I will laugh very happily
   Prompts: a toy and a laugh face

Input: {inputs}

"""


TREE_OF_MODEL_PROMPT_SUBJECT = """ You are an information analyst who can analyze and abstract a set of words to abstract some representation categories.
Below is a template that can represent the abstracted categories in Subject Dimension belonging to concrete noun:

TEMPLATE:
```
Categories:
- [Subject]
- [Subject]
- ...
```

You MUST abstract the categories in a highly abstract manner only from Subject Dimension and ensure the whole number of categories are fewer than 5.
Then, You MUST remove the Style-related categories.

Please output the categories following the format of TEMPLATE. 

Input: {input}

"""

TREE_OF_MODEL_PROMPT_STYLE = """ You are an information analyst who can analyze and summarize a set of words to abstract some representation categories.
Below is a template that can represent the the abstracted categories in Style Dimension:

TEMPLATE:
```
Categories:
- [Style]
- [Style]
- ...
```

You MUST abstract the categories in a highly abstract manner from only Style dimension and ensure the whole number of categories are fewer than 8.

Please output the Categories following the format of TEMPLATE.

Input: {input}

"""

TREE_OF_MODEL_PROMPT_ = """ You are an information analyst who can create a Knowledge Tree according to the input categories.
Below is a knowledge tree template:

TEMPLATE:
```
Knowledge Tree:
- [Subject]
  - [Style]
  - ...
- [Subject]
- ...
```

You MUST place the each Style category as subcategory under the Subject categories based on whether it can be well matched with a specific subject category to form a reasonable scene.

Please output the categories following the format of TEMPLATE. 

Subject Input: {subject}

Style Input: {style}

"""


TREE_OF_MODEL_PROMPT_ADD_MODELS = """ You are an information analyst who can add some input models to an input knowledge tree according to the similarity of the model tags and the categories of the knowledge tree.

You need to place each input model into the appropriate subcategory on the tree, one by one.
You MUST keep the original content of the knowledge tree.  


Please output the final knowledge tree.

Knowledge Tree Input: {tree}

Models Input: {models}

Model Tags Input: {model_tags}

"""

os.makedirs('image', exist_ok=True)


from langchain.llms.base import LLM

from langchain import PromptTemplate, HuggingFaceHub
from langchain.llms import HuggingFacePipeline

from transformers import AutoTokenizer, AutoModelForCausalLM


def seed_everything(seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    return seed


def prompts(name, description):
    def decorator(func):
        func.name = name
        func.description = description
        return func

    return decorator

def cut_dialogue_history(history_memory, keep_last_n_words=500):
    if history_memory is None or len(history_memory) == 0:
        return history_memory
    tokens = history_memory.split()
    n_tokens = len(tokens)
    
    if n_tokens < keep_last_n_words:
        return history_memory
    paragraphs = history_memory.split('\n')
    last_n_tokens = n_tokens
    while last_n_tokens >= keep_last_n_words:
        last_n_tokens -= len(paragraphs[0].split(' '))
        paragraphs = paragraphs[1:]
    return '\n' + '\n'.join(paragraphs)

class Text2Image:
    def __init__(self, device):
        print(f"Initializing Text2Image to {device}")
        self.device = device
        self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32

        self.llm = OpenAI(temperature=0)

        if not os.path.exists('model_tree_tot_sdxl.json'):
            with open('model_data_sdxl.json', 'r') as f:
                self.model_data_all = json.load(f)
                
            model_tags = {model["model_name"]: model["tag"] for model in self.model_data_all}

            model_tree = self.build_tree(model_tags)

            model_all_data = {model["model_name"].split(".")[0]: model for model in self.model_data_all}

            save_model_tree = {}
            for cate_name, sub_category in model_tree.items():
                cate_name = cate_name.lower()
                temp_category = {}

                if "Universal" not in sub_category:
                    temp_category["universal"] = [model_all_data["kandinsky"], model_all_data["sd_xl"]]

                for sec_cate_name, sub_sub_cates in sub_category.items():
                    sec_cate_name = sec_cate_name.lower()
                    temp_model_list = []

                    
                    for model_name in sub_sub_cates:
                        model_name = model_name.strip()
                        lower_name = model_name[0].lower() + model_name[1:]
                        if model_name in model_all_data:
                            temp_model_list.append(model_all_data[model_name])
                        elif lower_name in model_all_data:
                            temp_model_list.append(model_all_data[lower_name])

                        
                    temp_category[sec_cate_name] = temp_model_list

                save_model_tree[cate_name] = temp_category
                
            # write in json
            json_data = json.dumps(save_model_tree, indent=2)
            with open('model_tree_tot_sdxl.json', 'w') as f:
                f.write(json_data)
                f.close()
                


        with open('model_tree_tot_sdxl.json', 'r') as f:
            self.model_data = json.load(f)

        with open('model_data_sdxl.json', 'r') as f:
            self.model_all_data = json.load(f)
            self.model_all_data = {model["model_name"]:model for model in self.model_all_data}

        
        # Advantage databases with human feedback
        with open('./VectorDB_HF/prompt_embed_st.pickle', 'rb') as f:
            self.pt_pairs = pickle.load(f)

        with open('./VectorDB_HF/prompt2scores_sdxl.json', 'r') as f:
            self.prompt2scores = json.load(f)

        self.st_model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')

    def build_tree(self, model_tags):
        tags_only = list(model_tags.values()) 
        model_names = list(model_tags.keys())

        prompts = TREE_OF_MODEL_PROMPT.format(input=tags_only)

        
        prompt1 = TREE_OF_MODEL_PROMPT_SUBJECT.format(input=tags_only)
        response1 = self.llm(prompt1)
        
        prompt2 = TREE_OF_MODEL_PROMPT_STYLE.format(input=tags_only)
        response2 = self.llm(prompt2)

        prompt_tree = TREE_OF_MODEL_PROMPT_.format(style=response2, subject=response1)
        response = self.llm(prompt_tree)
        
        tree = response.split("Knowledge Tree:")[1]

        model_names = [name.split(".")[0] for name in list(model_tags.keys())]
        
        prompts = TREE_OF_MODEL_PROMPT_ADD_MODELS.format(model_tags=model_tags, tree=tree, models=model_names)
        
        tree = self.llm(prompts)

        output = {}
        tree_list = tree.split("\n")
        for category in tree_list:
            if category == '':
                continue
            
            if category.startswith("- "):
                current_key = category[2:]
                output[current_key] = {}
            elif category.startswith("  - "):
                next_key = category[4:]
                output[current_key][next_key] = []
            elif category.startswith("    - "):
                output[current_key][next_key].append(category[6:])
        
        return output

    def prompt_parse(self, inputs):
        
        prompts = PROMPT_PARSE_PROMPTS.format(inputs=inputs)
        output = self.llm(prompts)
        output = output.split("Prompts:")[1]
        
        return output.strip() 

    def get_property(self, model_data):
        properties = []
        for model in model_data:
            name = "model_name:" + model["model_name"] + ", "
            tag = "tag:" + ",".join(model["tag"])
            
            prop = name + tag + "\n\n"
            properties.append(prop)
        return properties
        

    def search_one_matched(self, inputs, search_list):
        
        tot_prompts = TOT_PROMPTS.format(search_list=search_list, input=inputs)

        model_name = self.llm(tot_prompts)
        print(model_name)

        if "Selected:" in model_name:
            model_name = model_name.split("Selected:")[-1]
        
        for ch in [",", ";", "."]:
            if ch in model_name:
                model_name = model_name.split(ch)[0]
        model_name = model_name.strip().lower()

        return model_name

    def select_best_model_with_HF(self, inputs, model_space):

        text_embed = torch.Tensor(self.st_model.encode([inputs]) )
        text_embed /= text_embed.norm(dim=1, keepdim=True)

        similarity = text_embed @ self.pt_pairs['text_embeds'].T

        topk_idxs = similarity.topk(5).indices[0,:]
        
        topk_model_list = []
        model_names_of_tree = [model["model_name"].split(".")[0] for model in model_space]

        for idx, p in enumerate(topk_idxs):

            save_prompt_name = self.pt_pairs['prompts'][int(p)][:100].replace('\n','') 

            model_scores = self.prompt2scores[save_prompt_name]

            model_names = list(model_scores.keys())
            reward_scores = []
            for name, values in model_scores.items():
                reward_scores.append(values['image_reward'])

            reward_scores = torch.Tensor(reward_scores)
            topk_model_idx = reward_scores.topk(5).indices.tolist()
            topk_models = [model_names[i] for i in topk_model_idx]

            topk_model_list.append(topk_models)

        prompt1 = f"Please judge whether each name in this list {model_names_of_tree} has highly similar name in the list {topk_model_list}, if yes, output the similar model name, the output MUST be Template: Model: [model name, ...]"
        intersection_model = self.llm(prompt1)
        
        prompts = f"Please select one model name from the following model list {intersection_model} that has the highest frequency and top ranking according to the list {topk_model_list}.\n\n The output MUST be Template: Model: [model name]"
        selected_model = self.llm(prompts)
        selected_model = selected_model.split("Model:")[1]

        return selected_model.strip()

    def search_model_tree(self, inputs):
        search_space = self.model_data
        search_path = []
        
        while not isinstance(search_space, list):
            search_list = list(search_space.keys())
            name = self.search_one_matched(inputs, search_list)
            search_path.append(name)
            search_space = search_space[name]

        candidate_model_data = {}
        for model in search_space:
            candidate_model_data[model["model_name"]] = model
        
        model_properties = self.get_property(search_space)

        model_name_pre = self.select_best_model_with_HF(inputs, search_space)
        all_names = list(self.model_all_data.keys())
        all_names = [name + "\n" for name in all_names]
        
        prompts = f"Please according to the name of {model_name_pre} and select one element from the list bellow, and ensure the selected element MUST be the same as one of the list {all_names}."
        model_name = self.llm(prompts).strip('\n')
        
        if model_name not in self.model_all_data:
            model_name = model_name[0].lower() + model_name[1:]
        selected_model = self.model_all_data[model_name]

        search_path.append(model_name)
        
        return search_path, selected_model


    def prompt_entension(self, inputs, model):
        example_prompt = model["example_prompts"][0]
        example_n_prompt = model["negtive_prompts"][0]
        
        prompts = f"Here is a paragraph describing an image. " \
                  f"{inputs}. " \
                  f"Please follow the sentence pattern of the example to expand the description of the input paragraph. The output MUST preserve the contents of the input paragraph. Example: {example_prompt}."

        extended_prompt = self.llm(prompts)
        
        return extended_prompt, example_n_prompt

    def match_id(self, model):

        model_names = list(self.model_all_data.keys())
        
        prompts = f"Here is a model. " \
                  f"{model}. " \
                  f"Please select the model name that best matches the given model from the model name list {model_names}. " \
                  f"The output must be the same as the word in the list. "

        matched_name = self.llm(prompts)
        matched_name = matched_name[2:]

        return matched_name


    @prompts(name="Generate Image From User Input Text", 
             description="always useful to generate an image from a user input text and save it to a file. "
                         "The input to this tool MUST be the whole user input text.")
                       
    def inference(self, inputs):
        # Prompt Parse
        original_input = inputs
        inputs = self.prompt_parse(inputs)

        # select model tree
        
        model_select_path, selected_model_data = self.search_model_tree(inputs)
        print("Selected model path:", model_select_path)
        print("Selected model name:", selected_model_data["model_name"])
        
        model_name = selected_model_data["model_name"]
        model_type = selected_model_data["model_type"]

        self.pipe_prior = None
        if "checkpoint" in model_type:

            if model_name == "kandinsky":

                self.pipe = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=self.torch_dtype)
                
                from kandinsky2 import get_kandinsky2
                model_kandinsky = get_kandinsky2('cuda', task_type='text2img', model_version='2.2')
                
            elif model_name == "stable-diffusion-xl-base-1.0":
                self.pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
            
            elif model_name in list(self.model_all_data.keys()):
                model_id = "./checkpoints/" + model_name
                self.pipe = StableDiffusionXLPipeline.from_single_file(model_id, torch_dtype=self.torch_dtype)
                
            self.pipe.to(self.device)

        elif model_type == "lora":
            
            base_model = selected_model_data["resources_used"][0]
            base_model_name = self.match_id(base_model)
            if base_model_name == "stable-diffusion-xl-base-1.0":
                self.pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
            else:
                base_model_id = "./checkpoints/" + base_model_name
                self.pipe = StableDiffusionXLPipeline.from_single_file(base_model_id, torch_dtype=self.torch_dtype)
            
            
            self.pipe.to(self.device)
            self.pipe.load_lora_weights("./checkpoints", weight_name=model_name)

        if selected_model_data["example_prompts"][0] != "None":
            prompt, n_prompt = self.prompt_entension(inputs, selected_model_data)
            
        else:
            prompt = inputs
            n_prompt = selected_model_data["negtive_prompts"][0]
        
        if n_prompt == "None":
            n_prompt = ""

        prompt_embeds = None

        ## compel for long text
        compel = Compel(tokenizer=[self.pipe.tokenizer, self.pipe.tokenizer_2] , text_encoder=[self.pipe.text_encoder, self.pipe.text_encoder_2], returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, requires_pooled=[False, True])

        prompt_list = list(prompt.strip().split("."))
        n_prompt_list = list(n_prompt.strip().split("."))
        prompt = f'{prompt_list}.and()'
        n_prompt = f'{n_prompt_list}.and()'
        
        prompt_embeds, pooled_embeds = compel.build_conditioning_tensor(prompt)
        negative_conditioning, neg_pooled_embeds = compel.build_conditioning_tensor(n_prompt)
        [prompt_embeds, negative_conditioning] = compel.pad_conditioning_tensors_to_same_length([prompt_embeds, negative_conditioning])
        negative_prompt_embeds = negative_conditioning

        if prompt_embeds is not None:
            images = self.pipe(prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_embeds, negative_prompt_embeds=negative_prompt_embeds, negative_pooled_prompt_embeds=neg_pooled_embeds).images
            
        elif model_name == "kandinsky":
            images = model_kandinsky.generate_text2img(prompt, decoder_steps=50, batch_size=1, h=1024, w=1024)
        
        else:
            images = self.pipe(prompt, negative_prompt=n_prompt).images
            
        image_filename = os.path.join('image', f"{str(uuid.uuid4())[:8]}.png")
        
        output = images[0]
        output.save(image_filename)
        
        print(
            f"\nProcessed Text2Image, Input Text: {inputs}, Output Image: {image_filename}")
        return image_filename


class ConversationBot:
    def __init__(self, load_dict):
        print(f"Initializing DiffusionGPT, load_dict={load_dict}")
        
        self.models = {}
        # Load Basic Foundation Models
        for class_name, device in load_dict.items():
            self.models[class_name] = globals()[class_name](device=device)

        # Load Template Foundation Models
        for class_name, module in globals().items():
            if getattr(module, 'template_model', False):
                template_required_names = {k for k in inspect.signature(module.__init__).parameters.keys() if k!='self'}
                loaded_names = set([type(e).__name__ for e in self.models.values()])
                if template_required_names.issubset(loaded_names):
                    self.models[class_name] = globals()[class_name](
                        **{name: self.models[name] for name in template_required_names})
        
        print(f"All the Available Functions: {self.models}")

        self.tools = []
        for instance in self.models.values():
            for e in dir(instance):
                if e.startswith('inference'):
                    func = getattr(instance, e)
                    self.tools.append(Tool(name=func.name, description=func.description, func=func))
        self.llm = OpenAI(temperature=0)
        
        self.memory = ConversationBufferMemory(memory_key="chat_history", output_key='output')

    def init_agent(self, lang):
        self.memory.clear() #clear previous history
        
        place = "Enter text and press enter, or upload an image"
        label_clear = "Clear"
        
        self.agent = initialize_agent(
            self.tools,
            self.llm,
            agent="conversational-react-description",
            verbose=True,
            memory=self.memory,
            return_intermediate_steps=True,
            agent_kwargs={'prefix': PREFIX, 'format_instructions': FORMAT_INSTRUCTIONS,
                          'suffix': SUFFIX},
            handle_parsing_errors="Check your output and make sure it conforms!" )
        return gr.update(visible = True), gr.update(visible = False), gr.update(placeholder=place), gr.update(value=label_clear)

    def run_text(self, text, state):
        self.agent.memory.buffer = cut_dialogue_history(self.agent.memory.buffer, keep_last_n_words=500)
        res = self.agent({"input": text.strip()})
        res['output'] = res['output'].replace("\\", "/")
        response = re.sub('(image/[-\w]*.png)', lambda m: f'![](file={m.group(0)})*{m.group(0)}*', res['output'])
        state = state + [(text, response)]
        print(f"\nProcessed run_text, Input text: {text}\n")
        return state, state

if __name__ == '__main__':

    parser = argparse.ArgumentParser()
    parser.add_argument('--load', type=str, default="Text2Image_cuda:0")
    args = parser.parse_args()
    load_dict = {e.split('_')[0].strip(): e.split('_')[1].strip() for e in args.load.split(',')}
    
    def init_api(apikey):
        os.environ['OPENAI_API_KEY'] = apikey
        global bot
        bot = ConversationBot(load_dict=load_dict)
        print('set new api key:', apikey)
        return None

    init_api(apikey="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")
    def inference_warp(prompt):
        prompt = prompt.strip()
        global bot
        state = []
        _, state = bot.run_text(prompt, state)
        
        print('========>', str(state))
        
        pattern = r"\(file=(.*?)\)"
        matches = re.findall(pattern,  str(state))

        
        if matches:
            file_path = matches[0]
            print(file_path)
        

        image = Image.open(file_path)
        return image

    with gr.Blocks(css="#chatbot .overflow-y-auto{height:1000px}") as demo:
        state = gr.State([])
        with gr.Row():
            with gr.Column():
                apikey = gr.Textbox(label='apikey', value="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")
                prompt = gr.Textbox(label='Prompt')
                run_button = gr.Button('Generate Image')

            result = gr.Image(label="Generated Image")
        bot.init_agent("English")
        run_button.click(fn=inference_warp,
                    inputs=prompt,
                    outputs=result,)

        apikey.change(fn=init_api, inputs=[apikey])
                    

        examples = [
                ["a girl with dress and red hat."],
                ["generate an image of a laughing woman, fashion magazine cover."],
                ["a cat on the grass."],
                ["create an illustration of a romantic couple sharing a tender moment under a starry sky."],
                ["a robot cooking in the kitchen."]

        ]
        gr.Examples(examples=examples,
                    inputs=prompt,
                    outputs=result,
                    fn=inference_warp,
                    cache_examples=True,
                    run_on_click=True
                    )
                    
    demo.launch(server_name="0.0.0.0", server_port=7862)