Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
# -*- coding: utf-8 -*-
|
2 |
"""
|
3 |
Updated on 09/13/2023
|
|
|
4 |
"""
|
5 |
|
6 |
import streamlit as st
|
@@ -85,7 +86,7 @@ with st.form(key="my_form"):
|
|
85 |
'checkpoint_path': './vocab/bioformer-cased-v1.0/bioformer-cased-v1.0-model.ckpt-2000000',
|
86 |
'vocab_path': './vocab/bioformer-cased-v1.0/vocab.txt'}
|
87 |
|
88 |
-
modelfile = './vocab/
|
89 |
|
90 |
elif model == '2':
|
91 |
vocabfiles = {'labelfile': './dict_new_hpo/lable.vocab',
|
@@ -99,6 +100,19 @@ with st.form(key="my_form"):
|
|
99 |
|
100 |
modelfile='./vocab/bioformer_p5n5_b64_1e-5_95_hponew3.h5'
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
biotag_dic=dic_ont(ontfiles)
|
103 |
|
104 |
nn_model=bioTag_Bioformer(vocabfiles)
|
@@ -107,6 +121,7 @@ with st.form(key="my_form"):
|
|
107 |
|
108 |
nn_model1, biotag_dic1 = load_model(model='1')
|
109 |
nn_model2, biotag_dic2 = load_model(model='2')
|
|
|
110 |
|
111 |
else:
|
112 |
@st.cache_resource
|
@@ -193,10 +208,9 @@ para_set={
|
|
193 |
st.markdown("")
|
194 |
st.markdown("## ⏳ Tagging results:")
|
195 |
with st.spinner('Wait for tagging...'):
|
196 |
-
|
197 |
tag_result1=bioTag(doc,biotag_dic1,nn_model1,onlyLongest=para_set['onlyLongest'], abbrRecog=para_set['abbrRecog'],Threshold=para_set['ML_Threshold'])
|
198 |
tag_result2=bioTag(doc,biotag_dic2,nn_model2,onlyLongest=para_set['onlyLongest'], abbrRecog=para_set['abbrRecog'],Threshold=para_set['ML_Threshold'])
|
199 |
-
|
200 |
|
201 |
st.markdown('<font style="color: rgb(128, 128, 128);">Move the mouse over the entity to display the id.</font>', unsafe_allow_html=True)
|
202 |
# print('dic...........:',biotag_dic.keys())
|
@@ -208,8 +222,9 @@ entity_end=0
|
|
208 |
|
209 |
# poid_counts = []
|
210 |
|
211 |
-
hpoid_count1={}
|
212 |
hpoid_count2 = {}
|
|
|
213 |
|
214 |
tag_display = {}
|
215 |
|
@@ -256,6 +271,28 @@ if len(tag_result2) >= 0:
|
|
256 |
|
257 |
flag = True
|
258 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
if not flag:
|
260 |
html_results = doc
|
261 |
else:
|
@@ -273,11 +310,13 @@ else:
|
|
273 |
html_results += '<font style="background-color: rgb(255, 204, 0)' + ';" title="' + entity_id + '">' + doc[entity_start:entity_end] + '</font>'
|
274 |
elif type == "2":
|
275 |
html_results += '<font style="background-color: rgb(255, 0, 0)' + ';" title="' + entity_id + '">' + doc[entity_start:entity_end] + '</font>'
|
|
|
|
|
|
|
276 |
html_results += doc[entity_end:]
|
277 |
|
278 |
st.markdown('<table border="1"><tr><td>'+html_results+'</td></tr></table>', unsafe_allow_html=True)
|
279 |
|
280 |
-
|
281 |
#table
|
282 |
data_entity=[]
|
283 |
for ele in hpoid_count1.keys():
|
@@ -296,6 +335,16 @@ for ele in hpoid_count2.keys():
|
|
296 |
temp=[ele,term_name,hpoid_count2[ele]] #hpoid, term name, count
|
297 |
data_entity.append(temp)
|
298 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
st.markdown("")
|
300 |
st.markdown("")
|
301 |
# st.markdown("## Table output:")
|
|
|
1 |
# -*- coding: utf-8 -*-
|
2 |
"""
|
3 |
Updated on 09/13/2023
|
4 |
+
|
5 |
"""
|
6 |
|
7 |
import streamlit as st
|
|
|
86 |
'checkpoint_path': './vocab/bioformer-cased-v1.0/bioformer-cased-v1.0-model.ckpt-2000000',
|
87 |
'vocab_path': './vocab/bioformer-cased-v1.0/vocab.txt'}
|
88 |
|
89 |
+
modelfile = './vocab/bioformer_fyeco.h5'
|
90 |
|
91 |
elif model == '2':
|
92 |
vocabfiles = {'labelfile': './dict_new_hpo/lable.vocab',
|
|
|
100 |
|
101 |
modelfile='./vocab/bioformer_p5n5_b64_1e-5_95_hponew3.h5'
|
102 |
|
103 |
+
elif model == '3':
|
104 |
+
vocabfiles = {'labelfile': './dict_new_sympo/lable.vocab',
|
105 |
+
'config_path': './vocab/bioformer-cased-v1.0/bert_config.json',
|
106 |
+
'checkpoint_path': './vocab/bioformer-cased-v1.0/bioformer-cased-v1.0-model.ckpt-2000000',
|
107 |
+
'vocab_path': './vocab/bioformer-cased-v1.0/vocab.txt'}
|
108 |
+
|
109 |
+
ontfiles = {'dic_file': './dict_new_sympo/noabb_lemma.dic',
|
110 |
+
'word_hpo_file': './dict_new_sympo/word_id_map.json',
|
111 |
+
'hpo_word_file': './dict_new_sympo/id_word_map.json'}
|
112 |
+
|
113 |
+
modelfile='./vocab/bioformer_sympo.h5'
|
114 |
+
pass
|
115 |
+
|
116 |
biotag_dic=dic_ont(ontfiles)
|
117 |
|
118 |
nn_model=bioTag_Bioformer(vocabfiles)
|
|
|
121 |
|
122 |
nn_model1, biotag_dic1 = load_model(model='1')
|
123 |
nn_model2, biotag_dic2 = load_model(model='2')
|
124 |
+
nn_model3, biotag_dic3 = load_model(model='3')
|
125 |
|
126 |
else:
|
127 |
@st.cache_resource
|
|
|
208 |
st.markdown("")
|
209 |
st.markdown("## ⏳ Tagging results:")
|
210 |
with st.spinner('Wait for tagging...'):
|
|
|
211 |
tag_result1=bioTag(doc,biotag_dic1,nn_model1,onlyLongest=para_set['onlyLongest'], abbrRecog=para_set['abbrRecog'],Threshold=para_set['ML_Threshold'])
|
212 |
tag_result2=bioTag(doc,biotag_dic2,nn_model2,onlyLongest=para_set['onlyLongest'], abbrRecog=para_set['abbrRecog'],Threshold=para_set['ML_Threshold'])
|
213 |
+
tag_result3=bioTag(doc,biotag_dic3,nn_model3,onlyLongest=para_set['onlyLongest'], abbrRecog=para_set['abbrRecog'],Threshold=para_set['ML_Threshold'])
|
214 |
|
215 |
st.markdown('<font style="color: rgb(128, 128, 128);">Move the mouse over the entity to display the id.</font>', unsafe_allow_html=True)
|
216 |
# print('dic...........:',biotag_dic.keys())
|
|
|
222 |
|
223 |
# poid_counts = []
|
224 |
|
225 |
+
hpoid_count1= {}
|
226 |
hpoid_count2 = {}
|
227 |
+
hpoid_count3 = {}
|
228 |
|
229 |
tag_display = {}
|
230 |
|
|
|
271 |
|
272 |
flag = True
|
273 |
|
274 |
+
if len(tag_result3) >= 0:
|
275 |
+
entity_end = 0
|
276 |
+
for ele in tag_result3:
|
277 |
+
entity_start = int(ele[0])
|
278 |
+
#html_results += doc[entity_end:entity_start]
|
279 |
+
entity_end = int(ele[1])
|
280 |
+
entity_id = ele[2]
|
281 |
+
entity_score = ele[3]
|
282 |
+
tag_display[entity_start] = (entity_end, entity_id, "3")
|
283 |
+
text_results += ele[0] + '\t' + ele[1] + '\t' + doc[entity_start:entity_end] + '\t' + ele[2] + '\t' + format(
|
284 |
+
float(ele[3]), '.2f') + '\n'
|
285 |
+
|
286 |
+
if entity_id not in hpoid_count3.keys():
|
287 |
+
hpoid_count3[entity_id] = 1
|
288 |
+
else:
|
289 |
+
hpoid_count3[entity_id] += 1
|
290 |
+
|
291 |
+
# html_results += '<font style="background-color: rgb(255, 0, 0)' + ';" title="' + entity_id + '">' + doc[entity_start:entity_end] + '</font>'
|
292 |
+
#html_results += doc[entity_end:]
|
293 |
+
|
294 |
+
flag = True
|
295 |
+
|
296 |
if not flag:
|
297 |
html_results = doc
|
298 |
else:
|
|
|
310 |
html_results += '<font style="background-color: rgb(255, 204, 0)' + ';" title="' + entity_id + '">' + doc[entity_start:entity_end] + '</font>'
|
311 |
elif type == "2":
|
312 |
html_results += '<font style="background-color: rgb(255, 0, 0)' + ';" title="' + entity_id + '">' + doc[entity_start:entity_end] + '</font>'
|
313 |
+
elif type == "3":
|
314 |
+
html_results += '<font style="background-color: rgb(102, 255, 178)' + ';" title="' + entity_id + '">' + doc[entity_start:entity_end] + '</font>'
|
315 |
+
|
316 |
html_results += doc[entity_end:]
|
317 |
|
318 |
st.markdown('<table border="1"><tr><td>'+html_results+'</td></tr></table>', unsafe_allow_html=True)
|
319 |
|
|
|
320 |
#table
|
321 |
data_entity=[]
|
322 |
for ele in hpoid_count1.keys():
|
|
|
335 |
temp=[ele,term_name,hpoid_count2[ele]] #hpoid, term name, count
|
336 |
data_entity.append(temp)
|
337 |
|
338 |
+
for ele in hpoid_count3.keys():
|
339 |
+
segs=ele.split(';')
|
340 |
+
term_name=''
|
341 |
+
for seg in segs:
|
342 |
+
term_name+=biotag_dic3.hpo_word[seg][0]+';'
|
343 |
+
temp=[ele,term_name,hpoid_count3[ele]] #hpoid, term name, count
|
344 |
+
data_entity.append(temp)
|
345 |
+
|
346 |
+
|
347 |
+
|
348 |
st.markdown("")
|
349 |
st.markdown("")
|
350 |
# st.markdown("## Table output:")
|