File size: 11,546 Bytes
411342e 4048405 411342e 999925f 411342e 999925f 411342e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
# -*- coding: utf-8 -*-
"""
Updated on 09/13/2023
"""
import streamlit as st
from src.nn_model import bioTag_CNN,bioTag_Bioformer
from src.dic_ner import dic_ont
from src.tagging_text import bioTag
import os
import json
from pandas import DataFrame
import nltk
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
nltk.download('wordnet')
st.set_page_config(
page_title="Demo",
page_icon="π",
layout="wide",
menu_items={
}
)
# def _max_width_():
# max_width_str = f"max-width: 2400px;"
# st.markdown(
# f"""
# <style>
# .reportview-container .main .block-container{{
# {max_width_str}
# }}
# </style>
# """,
# unsafe_allow_html=True,
# )
# _max_width_()
# c30, c31, c32 = st.columns([2.5, 1, 3])
# with c30:
# # st.image("logo.png", width=400)
st.title("Demo")
with st.expander("π About this demo", expanded=True):
st.write(
"""
- This demo is an extension work using [PhenoTagger](https://github.com/ncbi-nlp/PhenoTagger) library
- Hackathon: Nonaworks - Gingko Problem 2
"""
)
st.markdown("")
st.markdown("")
st.markdown("## β Paste your text ")
with st.form(key="my_form"):
ce, c1, ce, c2, c3 = st.columns([0.07, 1, 0.07, 4, 0.07])
with c1:
ModelType = st.radio(
"Choose your model",
["Bioformer(Default)"],
help="Bioformer is more precise, CNN is more efficient",
)
if ModelType == "Bioformer(Default)":
# kw_model = KeyBERT(model=roberta)
@st.cache_resources
def load_model(model='hpo'):
if model =='1':
ontfiles = {'dic_file': './dict_new_fyeco/noabb_lemma.dic',
'word_hpo_file': './dict_new_fyeco/word_id_map.json',
'hpo_word_file': './dict_new_fyeco/id_word_map.json'}
vocabfiles = {'labelfile': './dict_new_fyeco/lable.vocab',
'config_path': './vocab/bioformer-cased-v1.0/bert_config.json',
'checkpoint_path': './vocab/bioformer-cased-v1.0/bioformer-cased-v1.0-model.ckpt-2000000',
'vocab_path': './vocab/bioformer-cased-v1.0/vocab.txt'}
modelfile = './vocab/bioformer.h5'
elif model == '2':
vocabfiles = {'labelfile': './dict_new_hpo/lable.vocab',
'config_path': './vocab/bioformer-cased-v1.0/bert_config.json',
'checkpoint_path': './vocab/bioformer-cased-v1.0/bioformer-cased-v1.0-model.ckpt-2000000',
'vocab_path': './vocab/bioformer-cased-v1.0/vocab.txt'}
ontfiles = {'dic_file': './dict_new_hpo/noabb_lemma.dic',
'word_hpo_file': './dict_new_hpo/word_id_map.json',
'hpo_word_file': './dict_new_hpo/id_word_map.json'}
modelfile='./vocab/bioformer_p5n5_b64_1e-5_95_hponew3.h5'
biotag_dic=dic_ont(ontfiles)
nn_model=bioTag_Bioformer(vocabfiles)
nn_model.load_model(modelfile)
return nn_model,biotag_dic
nn_model1, biotag_dic1 = load_model(model='1')
nn_model2, biotag_dic2 = load_model(model='2')
else:
@st.cache_resources
def load_model():
ontfiles={'dic_file':'./dict_new/noabb_lemma.dic',
'word_hpo_file':'./dict_new/word_id_map.json',
'hpo_word_file':'./dict_new/id_word_map.json'}
vocabfiles={'w2vfile':'./vocab/bio_embedding_intrinsic.d200',
'charfile':'./vocab/char.vocab',
'labelfile':'./dict_new/lable.vocab',
'posfile':'./vocab/pos.vocab'}
modelfile='./vocab/cnn_p5n5_b128_95_hponew1.h5'
biotag_dic=dic_ont(ontfiles)
nn_model=bioTag_CNN(vocabfiles)
nn_model.load_model(modelfile)
return nn_model,biotag_dic
nn_model,biotag_dic = load_model()
para_overlap = st.checkbox(
"Overlap concept",
value=False,
help="Tick this box to identify overlapping concepts",
)
para_abbr = st.checkbox(
"Abbreviaitons",
value=True,
help="Tick this box to identify abbreviations",
)
para_threshold = st.slider(
"Threshold",
min_value=0.5,
max_value=1.0,
value=0.95,
step=0.05,
help="Retrun the preditions which socre over the threshold.",
)
with c2:
doc = st.text_area(
"Paste your text below",
value = 'The clinical features of Angelman syndrome (AS) comprise severe mental retardation, postnatal microcephaly, macrostomia and prognathia, absence of speech, ataxia, and a happy disposition. We report on seven patients who lack most of these features, but presented with obesity, muscular hypotonia and mild mental retardation. Based on the latter findings, the patients were initially suspected of having Prader-Willi syndrome. DNA methylation analysis of SNRPN and D15S63, however, revealed an AS pattern, ie the maternal band was faint or absent. Cytogenetic studies and microsatellite analysis demonstrated apparently normal chromosomes 15 of biparental inheritance. We conclude that these patients have an imprinting defect and a previously unrecognised form of AS. The mild phenotype may be explained by an incomplete imprinting defect or by cellular mosaicism.',
height=400,
)
# MAX_WORDS = 500
# import re
# res = len(re.findall(r"\w+", doc))
# if res > MAX_WORDS:
# st.warning(
# "β οΈ Your text contains "
# + str(res)
# + " words."
# + " Only the first 500 words will be reviewed. Stay tuned as increased allowance is coming! π"
# )
# doc = doc[:MAX_WORDS]
submit_button = st.form_submit_button(label="π±οΈ Submit!")
if not submit_button:
st.stop()
#st.write(para_overlap,para_abbr,para_threshold)
para_set={
#model_type':para_model, # cnn or bioformer
'onlyLongest': not para_overlap, # False: return overlap concepts, True only longgest
'abbrRecog':para_abbr,# False: don't identify abbr, True: identify abbr
'ML_Threshold':para_threshold,# the Threshold of deep learning model
}
st.markdown("")
st.markdown("## β³ Tagging results:")
with st.spinner('Wait for tagging...'):
tag_result1=bioTag(doc,biotag_dic1,nn_model1,onlyLongest=para_set['onlyLongest'], abbrRecog=para_set['abbrRecog'],Threshold=para_set['ML_Threshold'])
tag_result2=bioTag(doc,biotag_dic2,nn_model2,onlyLongest=para_set['onlyLongest'], abbrRecog=para_set['abbrRecog'],Threshold=para_set['ML_Threshold'])
st.markdown('<font style="color: rgb(128, 128, 128);">Move the mouse over the entity to display the id.</font>', unsafe_allow_html=True)
# print('dic...........:',biotag_dic.keys())
# st.write('parameters:', para_overlap,para_abbr,para_threshold)
html_results=''
text_results=doc+'\n'
entity_end=0
# poid_counts = []
hpoid_count1={}
hpoid_count2 = {}
tag_display = {}
flag = False
if len(tag_result1)>=0:
for ele in tag_result1:
entity_start=int(ele[0])
#html_results+=doc[entity_end:entity_start]
entity_end=int(ele[1])
entity_id=ele[2]
entity_score=ele[3]
tag_display[entity_start] = (entity_end, entity_id, "1")
text_results+=ele[0]+'\t'+ele[1]+'\t'+doc[entity_start:entity_end]+'\t'+ele[2]+'\t'+format(float(ele[3]),'.2f')+'\n'
if entity_id not in hpoid_count1.keys():
hpoid_count1[entity_id]=1
else:
hpoid_count1[entity_id]+=1
#html_results+='<font style="background-color: rgb(255, 204, 0)'+';" title="'+entity_id+'">'+doc[entity_start:entity_end]+'</font>'
#html_results+=doc[entity_end:]
flag = True
if len(tag_result2) >= 0:
entity_end = 0
for ele in tag_result2:
entity_start = int(ele[0])
#html_results += doc[entity_end:entity_start]
entity_end = int(ele[1])
entity_id = ele[2]
entity_score = ele[3]
tag_display[entity_start] = (entity_end, entity_id, "2")
text_results += ele[0] + '\t' + ele[1] + '\t' + doc[entity_start:entity_end] + '\t' + ele[2] + '\t' + format(
float(ele[3]), '.2f') + '\n'
if entity_id not in hpoid_count2.keys():
hpoid_count2[entity_id] = 1
else:
hpoid_count2[entity_id] += 1
# html_results += '<font style="background-color: rgb(255, 0, 0)' + ';" title="' + entity_id + '">' + doc[entity_start:entity_end] + '</font>'
#html_results += doc[entity_end:]
flag = True
if not flag:
html_results = doc
else:
myKeys = list(tag_display.keys())
myKeys.sort()
sorted_tag_display = {i: tag_display[i] for i in myKeys}
entity_end = 0
for entity_start, value in sorted_tag_display.items():
html_results += doc[entity_end:entity_start]
entity_end = value[0]
entity_id = value[1]
type = value[2]
if type == "1":
html_results += '<font style="background-color: rgb(255, 204, 0)' + ';" title="' + entity_id + '">' + doc[entity_start:entity_end] + '</font>'
elif type == "2":
html_results += '<font style="background-color: rgb(255, 0, 0)' + ';" title="' + entity_id + '">' + doc[entity_start:entity_end] + '</font>'
html_results += doc[entity_end:]
st.markdown('<table border="1"><tr><td>'+html_results+'</td></tr></table>', unsafe_allow_html=True)
#table
data_entity=[]
for ele in hpoid_count1.keys():
segs=ele.split(';')
term_name=''
for seg in segs:
term_name+=biotag_dic1.hpo_word[seg][0]+';'
temp=[ele,term_name,hpoid_count1[ele]] #hpoid, term name, count
data_entity.append(temp)
for ele in hpoid_count2.keys():
segs=ele.split(';')
term_name=''
for seg in segs:
term_name+=biotag_dic2.hpo_word[seg][0]+';'
temp=[ele,term_name,hpoid_count2[ele]] #hpoid, term name, count
data_entity.append(temp)
st.markdown("")
st.markdown("")
# st.markdown("## Table output:")
# cs, c1, c2, c3, cLast = st.columns([2, 1.5, 1.5, 1.5, 2])
# with c1:
# CSVButton2 = download_button(keywords, "Data.csv", "π₯ Download (.csv)")
# with c2:
# CSVButton2 = download_button(keywords, "Data.txt", "π₯ Download (.txt)")
# with c3:
# CSVButton2 = download_button(keywords, "Data.json", "π₯ Download (.json)")
# st.header("")
df = (
DataFrame(data_entity, columns=["Phenotype ID", "Term Name","Frequency"])
.sort_values(by="Frequency", ascending=False)
.reset_index(drop=True)
)
df.index += 1
c1, c2, c3 = st.columns([1, 4, 1])
# format_dictionary = {
# "Relevancy": "{:.1%}",
# }
# df = df.format(format_dictionary)
with c2:
st.table(df)
c1, c2, c3 = st.columns([1, 1, 1])
with c2:
st.download_button('Download annotations', text_results)
|