Didier Guillevic
Initial commit
1c18375
raw
history blame
3.97 kB
""" app.py
Question / answer over a collection of PDF documents using late interaction
ColBERT model for retrieval and DSPy+Mistral for answer generation.
:author: Didier Guillevic
:date: 2024-12-22
"""
import gradio as gr
import logging
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
import os
import pdf_utils # utilities for pdf processing
import colbert_utils # utilities for to build a ColBERT retrieval model
import dspy_utils # utilities for building a DSPy based retrieval generation model
from tqdm.notebook import tqdm
import warnings
warnings.filterwarnings('ignore')
def generate_response(question: str) -> list[str, str, str]:
"""Generate a response to a given question using the RAG model.
"""
global dspy_rag_model
if dspy_rag_model is None:
return "RAG model not built. Please build the model first."
# Generate response
responses, references, snippets = dspy_rag_model.generate_response(
question=question, k=5, method='chain_of_thought')
return responses, references, snippets
with gr.Blocks() as demo:
gr.Markdown("""
# Retrieval (ColBERT) + Generation (DSPy & Mistral)
Note: building the retrieval model might take a few minutes.
""")
# Input files and build status
with gr.Row():
upload_files = gr.File(
label="Upload PDF files to index", file_count="multiple",
value=["OECD_Engaging_with_HNW_individuals_tax_compliance_(2009).pdf",],
scale=5)
build_status = gr.Textbox(label="Build status", placeholder="", scale=2)
# button
build_button = gr.Button("Build retrieval generation model", variant='primary')
# Question to answer
question = gr.Textbox(
label="Question to answer",
placeholder="How do tax administrations address aggressive tax planning by HNWIs?"
)
response = gr.Textbox(
label="Response",
placeholder=""
)
with gr.Accordion("References & snippets", open=False):
references = gr.HTML(label="References")
snippets = gr.HTML(label="Snippets")
# button
response_button = gr.Button("Submit", variant='primary')
# Example questions given default provided PDF file
with gr.Accordion("Sample questions", open=False):
gr.Examples(
[
["What are the tax risks associated with high net worth individuals (HNWIs)?",],
["How do tax administrations address aggressive tax planning by HNWIs?",],
["How can tax administrations engage with HNWIs to improve tax compliance?",],
["What are the benefits of establishing dedicated HNWI units within tax administrations?",],
["How can international cooperation help address offshore tax risks associated with HNWIs?",],
],
inputs=[question,],
outputs=[response, references, snippets],
fn=generate_response,
cache_examples=False,
label="Sample questions"
)
# Documentation
with gr.Accordion("Documentation", open=False):
gr.Markdown("""
- What
- Retrieval augmented generation (RAG) model based on ColBERT and DSPy.
- Retrieval base model: 'antoinelouis/colbert-xm' (multilingual model)
- Generation framework: DSPy and Mistral.
- How
- Upload PDF files to index.
- Build the retrieval augmented model (might take a few minutes)
- Ask a question to generate a response.
""")
# Click actions
build_button.click(
fn=build_rag_model,
inputs=[upload_files],
outputs=[build_status]
)
response_button.click(
fn=generate_response,
inputs=[question],
outputs=[response, references, snippets]
)
demo.launch(show_api=False)