DhominickJ commited on
Commit
7234470
·
0 Parent(s):

Initial Model with the Dexy Assistant

Browse files
Files changed (3) hide show
  1. .gitignore +1 -0
  2. localmodel.py +43 -0
  3. requirements.txt +2 -0
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ smollm
localmodel.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # pip install transformers
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import streamlit as st
4
+ checkpoint = "HuggingFaceTB/SmolLM-135M-Instruct"
5
+
6
+ device = "cpu" # for GPU use "gpu" usage or "cpu" for CPU usage
7
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
8
+ # for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
9
+ model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
10
+
11
+ st.title("Dexy Chat Assistant")
12
+
13
+ # Initialize session state for chat history
14
+ if 'messages' not in st.session_state:
15
+ st.session_state.messages = []
16
+
17
+ # Text input for user
18
+ user_name = st.text_input("Your name please?: ", key="user_name")
19
+ user_input = st.text_input("Enter your message:", key="user_input")
20
+
21
+ if st.button("Send"):
22
+ if user_input:
23
+ # Add user message to history
24
+ st.session_state.messages.append({"role": "user", "content": user_input})
25
+
26
+ # Process with model
27
+ input_text = tokenizer.apply_chat_template(st.session_state.messages, tokenize=False)
28
+ encoded = tokenizer(input_text, return_tensors="pt", padding=True)
29
+ inputs = encoded.input_ids.to(device)
30
+ attention_mask = encoded.attention_mask.to(device)
31
+ outputs = model.generate(inputs, attention_mask=attention_mask, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True)
32
+ response = tokenizer.decode(outputs[0])
33
+
34
+ # Add assistant's response to history
35
+ st.session_state.messages.append({"role": "assistant", "content": response})
36
+
37
+ # Display full chat history
38
+ for msg in st.session_state.messages:
39
+ if msg["role"] == "user":
40
+ st.write(f"{user_name}: {msg['content']}")
41
+ else:
42
+ # st.write(f"Dexy: {msg['content']}")
43
+ st.write(f"Dexy: {msg['content'].split('<|im_start|>assistant')[-1].split('<|im_end|>')[0]}")
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ transformers
2
+ streamlit