import uuid from fastapi import FastAPI, HTTPException, Depends from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials from fastapi.responses import StreamingResponse from pydantic import BaseModel from typing import List, Optional import json from API_provider import API_Inference from core_logic import ( check_api_key_validity, update_request_count, get_rate_limit_status, get_subscription_status, get_available_models, get_model_info, ) app = FastAPI() security = HTTPBearer() class Message(BaseModel): role: str content: str class ChatCompletionRequest(BaseModel): model: str messages: List[Message] stream: Optional[bool] = False max_tokens: Optional[int] = 4000 temperature: Optional[float] = 0.5 top_p: Optional[float] = 0.95 def get_api_key(credentials: HTTPAuthorizationCredentials = Depends(security)): return credentials.credentials @app.post("/v1/chat/completions") async def chat_completions(request: ChatCompletionRequest, api_key: str = Depends(get_api_key)): try: # Check API key validity and rate limit is_valid, error_message = check_api_key_validity(api_key) if not is_valid: raise HTTPException(status_code=401, detail=error_message) messages = [{"role": msg.role, "content": msg.content} for msg in request.messages] # Get model info model_info = get_model_info(request.model) if not model_info: raise HTTPException(status_code=400, detail="Invalid model specified") if "meta-llama-405b-turbo" in request.model: request.model = "meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo" if "claude-3.5-sonnet" in request.model: request.model = "claude-3-sonnet-20240229" if request.stream: def generate(): for chunk in API_Inference(messages, model=request.model, stream=True, max_tokens=request.max_tokens, temperature=request.temperature, top_p=request.top_p): yield f"data: {json.dumps({'choices': [{'delta': {'content': chunk}}]})}\n\n" yield "data: [DONE]\n\nCredits used: 1\n\n" # Update request count if request.model == "gpt-4o" or request.model == "claude-3-sonnet-20240229" or request.model == "gemini-1.5-pro" or request.model == "gemini-1-5-flash" or request.model == "meta-llama/Meta-Llama-3.1-405B-Instruct-Turbo": update_request_count(api_key, 1) elif request.model == "o1-mini": update_request_count(api_key, 2) elif request.model == "o1-preview": update_request_count(api_key, 3) return StreamingResponse(generate(), media_type="text/event-stream") else: response = API_Inference(messages, model=request.model, stream=False, max_tokens=request.max_tokens, temperature=request.temperature, top_p=request.top_p) # Update request count update_request_count(api_key, 1) # Assume 1 credit per request, adjust as needed return { "id": f"chatcmpl-{uuid.uuid4()}", "object": "chat.completion", "created": int(uuid.uuid1().time // 1e7), "model": request.model, "choices": [ { "index": 0, "message": { "role": "assistant", "content": response }, "finish_reason": "stop" } ], "usage": { "prompt_tokens": len(' '.join(msg['content'] for msg in messages).split()), "completion_tokens": len(response.split()), "total_tokens": len(' '.join(msg['content'] for msg in messages).split()) + len(response.split()) }, "credits_used": 1 } except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.get("/rate_limit/status") async def get_rate_limit_status_endpoint(api_key: str = Depends(get_api_key)): is_valid, error_message = check_api_key_validity(api_key, check_rate_limit=False) if not is_valid: raise HTTPException(status_code=401, detail=error_message) return get_rate_limit_status(api_key) @app.get("/subscription/status") async def get_subscription_status_endpoint(api_key: str = Depends(get_api_key)): is_valid, error_message = check_api_key_validity(api_key, check_rate_limit=False) if not is_valid: raise HTTPException(status_code=401, detail=error_message) return get_subscription_status(api_key) @app.get("/models") async def get_available_models_endpoint(api_key: str = Depends(get_api_key)): is_valid, error_message = check_api_key_validity(api_key, check_rate_limit=False) if not is_valid: raise HTTPException(status_code=401, detail=error_message) return {"data": [{"id": model} for model in get_available_models().values()]} if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=8000)