Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import math | |
import torch.utils.model_zoo as model_zoo | |
import torch.nn.functional as F | |
__all__ = ['ResNet', 'resnet18_cbam', 'resnet34_cbam', 'resnet50_cbam', 'resnet101_cbam', | |
'resnet152_cbam'] | |
model_urls = { | |
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', | |
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', | |
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', | |
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', | |
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', | |
} | |
def conv3x3(in_planes, out_planes, stride=1): | |
"3x3 convolution with padding" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | |
padding=1, bias=False) | |
class ChannelAttention(nn.Module): | |
def __init__(self, in_planes, ratio=16): | |
super(ChannelAttention, self).__init__() | |
self.avg_pool = nn.AdaptiveAvgPool2d(1) | |
self.max_pool = nn.AdaptiveMaxPool2d(1) | |
self.fc1 = nn.Conv2d(in_planes, in_planes // 16, 1, bias=False) | |
self.relu1 = nn.ReLU() | |
self.fc2 = nn.Conv2d(in_planes // 16, in_planes, 1, bias=False) | |
self.sigmoid = nn.Sigmoid() | |
def forward(self, x): | |
avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x)))) | |
max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x)))) | |
out = avg_out + max_out | |
return self.sigmoid(out) | |
class SpatialAttention(nn.Module): | |
def __init__(self, kernel_size=7): | |
super(SpatialAttention, self).__init__() | |
assert kernel_size in (3, 7), 'kernel size must be 3 or 7' | |
padding = 3 if kernel_size == 7 else 1 | |
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) | |
self.sigmoid = nn.Sigmoid() | |
def forward(self, x): | |
avg_out = torch.mean(x, dim=1, keepdim=True) | |
max_out, _ = torch.max(x, dim=1, keepdim=True) | |
x = torch.cat([avg_out, max_out], dim=1) | |
x = self.conv1(x) | |
return self.sigmoid(x) | |
class BasicBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(BasicBlock, self).__init__() | |
self.conv1 = conv3x3(inplanes, planes, stride) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = conv3x3(planes, planes) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.ca = ChannelAttention(planes) | |
self.sa = SpatialAttention() | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1, downsample=None): | |
super(Bottleneck, self).__init__() | |
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, | |
padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) | |
self.bn3 = nn.BatchNorm2d(planes * 4) | |
self.relu = nn.ReLU(inplace=True) | |
self.ca = ChannelAttention(planes * 4) | |
self.sa = SpatialAttention() | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
out = self.ca(out) * out | |
out = self.sa(out) * out | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class ResNet(nn.Module): | |
def __init__(self, block, layers, num_classes=100, args=None): | |
self.inplanes = 64 | |
super(ResNet, self).__init__() | |
assert args is not None, "you should pass args to resnet" | |
if 'cifar' in args["dataset"]: | |
self.conv1 = nn.Sequential(nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False), | |
nn.BatchNorm2d(self.inplanes), nn.ReLU(inplace=True)) | |
elif 'imagenet' in args["dataset"] or 'stanfordcar' in args['dataset']: | |
if args["init_cls"] == args["increment"]: | |
self.conv1 = nn.Sequential( | |
nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False), | |
nn.BatchNorm2d(self.inplanes), | |
nn.ReLU(inplace=True), | |
nn.MaxPool2d(kernel_size=3, stride=2, padding=1), | |
) | |
else: | |
self.conv1 = nn.Sequential( | |
nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False), | |
nn.BatchNorm2d(self.inplanes), | |
nn.ReLU(inplace=True), | |
nn.MaxPool2d(kernel_size=3, stride=2, padding=1), | |
) | |
self.layer1 = self._make_layer(block, 64, layers[0]) | |
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) | |
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) | |
self.layer4 = self._make_layer(block, 512, layers[3], stride=2) | |
self.feature = nn.AvgPool2d(4, stride=1) | |
# self.fc = nn.Linear(512 * block.expansion, num_classes) | |
self.out_dim = 512 * block.expansion | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
m.weight.data.normal_(0, math.sqrt(2. / n)) | |
elif isinstance(m, nn.BatchNorm2d): | |
m.weight.data.fill_(1) | |
m.bias.data.zero_() | |
def _make_layer(self, block, planes, blocks, stride=1): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d(self.inplanes, planes * block.expansion, | |
kernel_size=1, stride=stride, bias=False), | |
nn.BatchNorm2d(planes * block.expansion), | |
) | |
layers = [] | |
layers.append(block(self.inplanes, planes, stride, downsample)) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append(block(self.inplanes, planes)) | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
x = self.conv1(x) | |
x = self.layer1(x) | |
x = self.layer2(x) | |
x = self.layer3(x) | |
x = self.layer4(x) | |
dim = x.size()[-1] | |
pool = nn.AvgPool2d(dim, stride=1) | |
x = pool(x) | |
x = x.view(x.size(0), -1) | |
return {"features": x} | |
def resnet18_cbam(pretrained=False, **kwargs): | |
"""Constructs a ResNet-18 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) | |
if pretrained: | |
pretrained_state_dict = model_zoo.load_url(model_urls['resnet18']) | |
now_state_dict = model.state_dict() | |
now_state_dict.update(pretrained_state_dict) | |
model.load_state_dict(now_state_dict) | |
return model | |
def resnet34_cbam(pretrained=False, **kwargs): | |
"""Constructs a ResNet-34 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) | |
if pretrained: | |
pretrained_state_dict = model_zoo.load_url(model_urls['resnet34']) | |
now_state_dict = model.state_dict() | |
now_state_dict.update(pretrained_state_dict) | |
model.load_state_dict(now_state_dict) | |
return model | |
def resnet50_cbam(pretrained=False, **kwargs): | |
"""Constructs a ResNet-50 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) | |
if pretrained: | |
pretrained_state_dict = model_zoo.load_url(model_urls['resnet50']) | |
now_state_dict = model.state_dict() | |
now_state_dict.update(pretrained_state_dict) | |
model.load_state_dict(now_state_dict) | |
return model | |
def resnet101_cbam(pretrained=False, **kwargs): | |
"""Constructs a ResNet-101 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) | |
if pretrained: | |
pretrained_state_dict = model_zoo.load_url(model_urls['resnet101']) | |
now_state_dict = model.state_dict() | |
now_state_dict.update(pretrained_state_dict) | |
model.load_state_dict(now_state_dict) | |
return model | |
def resnet152_cbam(pretrained=False, **kwargs): | |
"""Constructs a ResNet-152 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) | |
if pretrained: | |
pretrained_state_dict = model_zoo.load_url(model_urls['resnet152']) | |
now_state_dict = model.state_dict() | |
now_state_dict.update(pretrained_state_dict) | |
model.load_state_dict(now_state_dict) | |
return model |