Spaces:
Runtime error
Runtime error
File size: 7,392 Bytes
cb80c28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import logging
import numpy as np
import torch
import copy
from torch import nn
from torch.serialization import load
from tqdm import tqdm
from torch import optim
from torch.nn import functional as F
from torch.utils.data import DataLoader
from utils.inc_net import IncrementalNet
from models.base import BaseLearner
from utils.toolkit import target2onehot, tensor2numpy
init_epoch = 100
init_lr = 0.1
init_milestones = [40, 60, 80]
init_lr_decay = 0.1
init_weight_decay = 0.0005
epochs = 80
lrate = 0.1
milestones = [40, 70]
lrate_decay = 0.1
batch_size = 32
weight_decay = 2e-4
num_workers = 8
class Finetune(BaseLearner):
def __init__(self, args):
super().__init__(args)
self._network = IncrementalNet(args, False)
def after_task(self):
self._known_classes = self._total_classes
def save_checkpoint(self, test_acc):
assert self.args['model_name'] == 'finetune'
checkpoint_name = f"models/finetune/{self.args['csv_name']}"
_checkpoint_cpu = copy.deepcopy(self._network)
if isinstance(_checkpoint_cpu, nn.DataParallel):
_checkpoint_cpu = _checkpoint_cpu.module
_checkpoint_cpu.cpu()
save_dict = {
"tasks": self._cur_task,
"convnet": _checkpoint_cpu.convnet.state_dict(),
"fc":_checkpoint_cpu.fc.state_dict(),
"test_acc": test_acc
}
torch.save(save_dict, "{}_{}.pkl".format(checkpoint_name, self._cur_task))
def incremental_train(self, data_manager):
self._cur_task += 1
self._total_classes = self._known_classes + data_manager.get_task_size(
self._cur_task
)
self._network.update_fc(self._total_classes)
logging.info(
"Learning on {}-{}".format(self._known_classes, self._total_classes)
)
train_dataset = data_manager.get_dataset(
np.arange(self._known_classes, self._total_classes),
source="train",
mode="train",
)
self.train_loader = DataLoader(
train_dataset, batch_size=batch_size, shuffle=True, num_workers=num_workers
)
test_dataset = data_manager.get_dataset(
np.arange(0, self._total_classes), source="test", mode="test"
)
self.test_loader = DataLoader(
test_dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers
)
if len(self._multiple_gpus) > 1:
self._network = nn.DataParallel(self._network, self._multiple_gpus)
self._train(self.train_loader, self.test_loader)
if len(self._multiple_gpus) > 1:
self._network = self._network.module
def _train(self, train_loader, test_loader):
self._network.to(self._device)
if self._cur_task == 0:
optimizer = optim.SGD(
self._network.parameters(),
momentum=0.9,
lr=init_lr,
weight_decay=init_weight_decay,
)
scheduler = optim.lr_scheduler.MultiStepLR(
optimizer=optimizer, milestones=init_milestones, gamma=init_lr_decay
)
self._init_train(train_loader, test_loader, optimizer, scheduler)
else:
optimizer = optim.SGD(
self._network.parameters(),
lr=lrate,
momentum=0.9,
weight_decay=weight_decay,
) # 1e-5
scheduler = optim.lr_scheduler.MultiStepLR(
optimizer=optimizer, milestones=milestones, gamma=lrate_decay
)
self._update_representation(train_loader, test_loader, optimizer, scheduler)
def _init_train(self, train_loader, test_loader, optimizer, scheduler):
prog_bar = tqdm(range(init_epoch))
for _, epoch in enumerate(prog_bar):
self._network.train()
losses = 0.0
correct, total = 0, 0
for i, (_, inputs, targets) in enumerate(train_loader):
inputs, targets = inputs.to(self._device), targets.to(self._device)
logits = self._network(inputs)["logits"]
loss = F.cross_entropy(logits, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses += loss.item()
_, preds = torch.max(logits, dim=1)
correct += preds.eq(targets.expand_as(preds)).cpu().sum()
total += len(targets)
scheduler.step()
train_acc = np.around(tensor2numpy(correct) * 100 / total, decimals=2)
if epoch % 5 == 0:
test_acc = self._compute_accuracy(self._network, test_loader)
info = "Task {}, Epoch {}/{} => Loss {:.3f}, Train_accy {:.2f}, Test_accy {:.2f}".format(
self._cur_task,
epoch + 1,
init_epoch,
losses / len(train_loader),
train_acc,
test_acc,
)
else:
info = "Task {}, Epoch {}/{} => Loss {:.3f}, Train_accy {:.2f}".format(
self._cur_task,
epoch + 1,
init_epoch,
losses / len(train_loader),
train_acc,
)
prog_bar.set_description(info)
logging.info(info)
def _update_representation(self, train_loader, test_loader, optimizer, scheduler):
prog_bar = tqdm(range(epochs))
for _, epoch in enumerate(prog_bar):
self._network.train()
losses = 0.0
correct, total = 0, 0
for i, (_, inputs, targets) in enumerate(train_loader):
inputs, targets = inputs.to(self._device), targets.to(self._device)
logits = self._network(inputs)["logits"]
fake_targets = targets - self._known_classes
loss_clf = F.cross_entropy(
logits[:, self._known_classes :], fake_targets
)
loss = loss_clf
optimizer.zero_grad()
loss.backward()
optimizer.step()
losses += loss.item()
_, preds = torch.max(logits, dim=1)
correct += preds.eq(targets.expand_as(preds)).cpu().sum()
total += len(targets)
scheduler.step()
train_acc = np.around(tensor2numpy(correct) * 100 / total, decimals=2)
if epoch % 5 == 0:
test_acc = self._compute_accuracy(self._network, test_loader)
info = "Task {}, Epoch {}/{} => Loss {:.3f}, Train_accy {:.2f}, Test_accy {:.2f}".format(
self._cur_task,
epoch + 1,
epochs,
losses / len(train_loader),
train_acc,
test_acc,
)
else:
info = "Task {}, Epoch {}/{} => Loss {:.3f}, Train_accy {:.2f}".format(
self._cur_task,
epoch + 1,
epochs,
losses / len(train_loader),
train_acc,
)
prog_bar.set_description(info)
logging.info(info)
|