Spaces:
Build error
Build error
import gradio as gr | |
import librosa | |
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
import torch | |
import librosa | |
# load model and processor | |
processor = Wav2Vec2Processor.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-english") | |
model = Wav2Vec2ForCTC.from_pretrained("jonatasgrosman/wav2vec2-large-xlsr-53-english") | |
tokenizer = AutoTokenizer.from_pretrained("icon-it-tdtu/mt-en-vi-optimum") | |
model_lm = ORTModelForSeq2SeqLM.from_pretrained("icon-it-tdtu/mt-en-vi-optimum") | |
def process_audio_file(file): | |
data, sr = librosa.load(file) | |
if sr != 16000: | |
data = librosa.resample(data, sr, 16000) | |
inputs = processor(data, sampling_rate=16000, return_tensors="pt", padding=True) | |
return inputs | |
def transcribe(file, state=""): | |
inputs = process_audio_file(file) | |
with torch.no_grad(): | |
output_logit = model(inputs.input_values).logits | |
pred_ids = torch.argmax(output_logit, dim=-1) | |
text = processor.batch_decode(pred_ids)[0].lower() | |
print(text) | |
text = translate(text) | |
state += text + " " | |
return state, state | |
def translate(text): | |
batch = tokenizer([text], return_tensors="pt") | |
generated_ids = model_lm.generate(**batch) | |
translated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return translated_text | |
# Set the starting state to an empty string | |
gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(source="microphone", type="filepath", streaming=True), | |
"state" | |
], | |
outputs=[ | |
"textbox", | |
"state" | |
], | |
live=True).launch(debug=True) |