Spaces:
Build error
Build error
File size: 12,713 Bytes
dbf451c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
#import torch
#import torch.nn.functional as F
#from torchvision import transforms
from PIL import Image
import numpy as np
from numpy import dot
from numpy.linalg import norm
import onnx, os, time, onnxruntime
import pandas as pd
import threading
#import queue
import cv2
import av
import streamlit as st
from streamlit_webrtc import (
ClientSettings,
VideoProcessorBase,
WebRtcMode,
webrtc_streamer,
)
import args
# def to_numpy(tensor):
# return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
def get_image(x):
return x.split(', ')[0]
# Transform image to ToTensor
@st.cache(suppress_st_warning=True, allow_output_mutation=True)
def transform_image(image, IMG = True):
# transform = transforms.Compose([
# transforms.Resize((224, 224)),
# transforms.ToTensor(),
# transforms.Normalize((0.485, 0.456, 0.4065), (0.229, 0.224, 0.225)),
# ])
if IMG:
image = np.asarray(Image.open(image))
# -------------- RESIZE USING CV2 ---------------------
image = cv2.resize(image, dsize=(224, 224))
image = np.transpose(image, (2,0,1))
#image = (image/255-np.expand_dims(np.array([0.485, 0.456, 0.4065]),axis = (1,2)))/np.expand_dims(np.array([0.229, 0.224, 0.225]),axis = (1,2))
image = (image/255-np.array(args.MEAN))/np.array(args.STD)
img_transformed = np.expand_dims(image.astype(np.float32), axis = 0)
# x = torch.from_numpy(image.astype(np.float32))
# x = torch.transpose(x, 2, 0) # shape [3, 224, 224]
# -------------- RESIZE USING CV2 ---------------------
# img_transformed = []
# for _ in range(1):
# img_transformed.append(x)
# img_transformed = torch.stack(img_transformed) # shape [1, 3, 224, 224]
else:
# -------------- RESIZE USING CV2 ---------------------
image = cv2.resize(image, dsize=(224, 224))
image = np.transpose(image, (2,0,1))
#image = (image/255-np.expand_dims(np.array([0.485, 0.456, 0.4065]),axis = (1,2)))/np.expand_dims(np.array([0.229, 0.224, 0.225]),axis = (1,2))
image = (image/255-np.array(args.MEAN))/np.array(args.STD)
img_transformed = np.expand_dims(image.astype(np.float32), axis = 0)
# x = torch.from_numpy(image.astype(np.float32))
# x = torch.transpose(x, 2, 0)
# -------------- RESIZE USING CV2 ---------------------
# img_transformed = []
# img_transformed.append(x)
# img_transformed = torch.stack(img_transformed)
return img_transformed
# predict multi-level classification
@st.cache(suppress_st_warning=True, allow_output_mutation=True)
def get_classification(image_tensor, df_train, sub_test_list, embeddings,
ort_session, input_name, confidence
):
# Prediction time
start = time.time()
#ort_inputs = {input_name: to_numpy(image_tensor)}
ort_inputs = {input_name: image_tensor}
pred, em = ort_session.run(None, ort_inputs)
if pred.max(axis=1) > confidence: # threshold to select of item is car part or not, Yes if > 0.5
# Compute kNN (using Cosine)
#knn = torch.nn.CosineSimilarity(dim = 1)(torch.tensor(em), embeddings).topk(1, largest=True)
knn = np.array([dot((em), embeddings[i])/(norm(em)*norm(embeddings[i])) for i in range(embeddings.shape[0])]).flatten()
knn = np.argsort(knn)[-1]
# maker = 'Maker: '+str(df_train.iloc[knn.indices.item(), 0])
# model = str(df_train.iloc[knn.indices.item(), 1])
# vehicle = str(df_train.iloc[knn.indices.item(), 2])
# year = str(df_train.iloc[knn.indices.item(), 3])
# part = 'Part: '+str(df_train.iloc[knn.indices.item(), 4])
maker = 'Maker: '+str(df_train.iloc[knn, 0])
model = str(df_train.iloc[knn, 1])
if model=='nan':
model='Model: No information'
else:
model='Model: '+model
vehicle = str(df_train.iloc[knn, 2])
if vehicle=='nan':
vehicle='Vehicle: No information'
else:
vehicle='Vehicle: '+vehicle
year = str(df_train.iloc[knn, 3])
if year=='nan':
year='Year: No information'
else:
year='Year: '+year
part = 'Part: '+str(df_train.iloc[knn, 4])
predict_time = 'Predict time: '+str(round(time.time() - start,4))+' seconds'
# Similarity score
sim_score = 'Confidence: '+str(round(pred.max(axis=1).item()*100, 2))+'%'
else:
maker = 'This is not car part !'
model=vehicle=year=part=predict_time=sim_score=None
return {'maker':maker,'model':model,'vehicle':vehicle,'year':year, 'part':part, 'predict_time':predict_time,'sim_score':sim_score}
@st.cache(suppress_st_warning=True, allow_output_mutation=True)
def get_classification_frame(image_tensor, df_train, sub_test_list, embeddings,
ort_session, input_name
):
#ort_inputs = {input_name: to_numpy(image_tensor)}
ort_inputs = {input_name: image_tensor}
pred, em = ort_session.run(None, ort_inputs)
if pred.max(axis=1) > args.VIDEO_CONFIDENCE:
# knn = torch.nn.CosineSimilarity(dim = 1)(torch.tensor(em), embeddings).topk(1, largest=True)
# part = str(df_train.iloc[knn.indices.item(), 4])
knn = np.array([dot((em), embeddings[i])/(norm(em)*norm(embeddings[i])) for i in range(embeddings.shape[0])]).flatten()
knn = np.argsort(knn)[-1]
part = str(df_train.iloc[knn, 4])
# Similarity score
sim_score = str(round(pred.max(axis=1).item()*100, 2))+'%'
else:
part = 'No part detected'
sim_score = ''
return {'part_name':part,'sim_score':sim_score}
# predict similarity
@st.cache(suppress_st_warning=True, allow_output_mutation=True)
def get_similarity(image_tensor, df_train, sub_test_list, embeddings,
ort_session, input_name
):
start = time.time()
#ort_inputs = {input_name: to_numpy(image_tensor)}
ort_inputs = {input_name: image_tensor}
pred, em = ort_session.run(None, ort_inputs)
# Compute kNN (using Cosine)
#knn = torch.nn.CosineSimilarity(dim = 1)(torch.tensor(em), embeddings).topk(6, largest=True)
# idx = knn.indices.numpy()
knn = np.array([dot((em), embeddings[i])/(norm(em)*norm(embeddings[i])) for i in range(embeddings.shape[0])]).flatten()
idx = np.argsort(knn)[-6:]
predict_time = 'Predict time: '+str(round(time.time() - start,4))+' seconds'
images_path = 'Test_set'
images = [os.path.join(images_path, sub_test_list[i]) for i in idx]
# sub_test_list
return {'images': images, 'predict_time':predict_time}
# --------------------------------------------------------------------------------------------
# IMAGE INPUT
# --------------------------------------------------------------------------------------------
content_images_dict = {
name: os.path.join(args.IMAGES_PATH, filee) for name, filee in zip(args.CONTENT_IMAGES_NAME, args.CONTENT_IMAGES_FILE)
}
def show_original():
""" Show Uploaded or Example image before prediction
Returns:
-------
content_file: str
path to image
"""
if st.sidebar.checkbox('Upload', value= True, help = 'Select Upload to browse image from local machine'):
content_file = st.sidebar.file_uploader("", type=["png", "jpg", "jpeg"])
else:
content_name = st.sidebar.selectbox("or Choose an example Image below", args.CONTENT_IMAGES_NAME)
content_file = content_images_dict[content_name]
col1, col2 = st.columns(2)
with col1:
#col1.markdown('## Target image')
if content_file:
col1.write('')
col1.image(content_file, channels='BGR', width=300, clamp=True, caption='Input image')
return content_file, col2
def image_input(content_file, df_train, sub_test_list, embeddings, ort_session, input_name, col2):
# Set confidence level
confidence_threshold = st.slider(
"Confidence threshold", 0.0, 1.0, args.DEFAULT_CONFIDENCE_THRESHOLD, 0.05,
help='Choose minimum confidence level. If prediction result below this threshold, no information is shown.'
)
if content_file is not None:
content = transform_image(content_file)
pred_info = get_classification(
content, df_train, sub_test_list,
embeddings, ort_session, input_name, confidence_threshold
)
pred_images = get_similarity(
content, df_train, sub_test_list,
embeddings, ort_session, input_name
)
container = st.container()
col6, col7 = container.columns([.5, 4])
with col6:
if col6.button("PREDICT"):
print_classification(col2, content_file, pred_info)
if col7.button("SEARCH SIMILAR"):
print_classification(col2, content_file, pred_info)
if pred_info['maker']!='This is not car part !':
#container = st.container()
print_similar_img(pred_images) #, container)
else:
st.warning("No similar car part image ! Reduce confidence threshold OR Choose another image.")
else:
st.success("Upload an Image OR Untick the Upload Button from Options on the sidebar")
st.info("Navigate input source from Navigation on the sidebar")
st.stop()
WEBRTC_CLIENT_SETTINGS = ClientSettings(
rtc_configuration={"iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}]},
media_stream_constraints={
"video": True,
"audio": False,
},
)
def webcam_input(df_train, sub_test_list, embeddings, ort_session, input_name):
st.header("Webcam Live Feed")
class NeuralStyleTransferTransformer(VideoProcessorBase):
def __init__(self) -> None:
self._model_lock = threading.Lock()
def _annotate_image(self, image, pred_info):
# display the prediction
part_name = pred_info['part_name']
confidence = pred_info['sim_score']
label = f"{part_name} {confidence}"
cv2.putText(
image,
label,
(2, 30),
cv2.FONT_HERSHEY_SIMPLEX,
0.8,
(0, 255, 223),
2,
)
return image
def recv(self, frame: av.VideoFrame) -> av.VideoFrame:
image = frame.to_ndarray(format="bgr24")
content = transform_image(image, IMG = False)
pred_info = get_classification_frame(
content, df_train, sub_test_list,
embeddings, ort_session, input_name
)
annotated_image = self._annotate_image(image, pred_info)
return av.VideoFrame.from_ndarray(annotated_image, format="bgr24")
webrtc_ctx = webrtc_streamer(
key="live-cassification",
mode=WebRtcMode.SENDRECV,
client_settings=WEBRTC_CLIENT_SETTINGS,
video_processor_factory=NeuralStyleTransferTransformer,
async_processing=True,
)
def print_classification(col2, content_file, pred_info):
""" Print classification prediction
"""
with col2:
col2.markdown('### Predicted information')
col2.markdown('')
if pred_info['maker']!='This is not car part !':
col2.markdown('#### - {}'.format(pred_info['maker']))
col2.markdown('#### - {}'.format(pred_info['model']))
col2.markdown('#### - {}'.format(pred_info['vehicle']))
col2.markdown('#### - {}'.format(pred_info['year']))
col2.markdown('#### - {}'.format(pred_info['part']))
col2.markdown('#### - {}'.format(pred_info['predict_time']))
col2.markdown('#### - {}'.format(pred_info['sim_score']))
else:
col2.markdown('### {}'.format(pred_info['maker']))
def print_similar_img(pred_images):
""" Print similarity images prediction
"""
st.markdown('### Most similar images')
st.markdown('#### {}'.format(pred_images['predict_time']))
col3, col4, col5 = st.columns(3)
with col3:
col3.image(pred_images['images'][0], channels='BGR', clamp=True, width = 300)
col3.image(pred_images['images'][1], channels='BGR', clamp=True, width = 300)
with col4:
#col4.markdown('# ')
col4.image(pred_images['images'][3], channels='BGR', clamp=True, width = 300)
col4.image(pred_images['images'][4], channels='BGR', clamp=True, width = 300)
with col5:
col5.image(pred_images['images'][5], channels='BGR', clamp=True, width = 300)
col5.image(pred_images['images'][2], channels='BGR', clamp=True, width = 300)
|