Spaces:
Sleeping
Sleeping
# monitor.py | |
import os | |
import utils | |
import streamlit as st | |
import geopandas as gpd | |
from authentication import greeting, check_password | |
from senHub import SenHub | |
from datetime import datetime | |
from sentinelhub import SHConfig | |
import requests | |
import process | |
from zipfile import ZipFile | |
import plotly.express as px | |
def check_authentication(): | |
if not check_password(): | |
st.stop() | |
config = SHConfig() | |
config.instance_id = '6c220beb-90c4-4131-b658-10cddd8d97b9' | |
config.sh_client_id = '17e7c154-7f2d-4139-b1af-cef762385079' | |
config.sh_client_secret = 'KvbQMKZB85ZWEgWuxqiWIVEvTAQEfoF9' | |
def select_field(gdf): | |
st.markdown(""" | |
<style> | |
.stSelectbox > div > div {cursor: pointer;} | |
</style> | |
""", unsafe_allow_html=True) | |
names = gdf['name'].tolist() | |
names.append("Select Field") | |
field_name = st.selectbox("Select Field", options=names, key="field_name_monitor", help="Select the field to edit", index=len(names)-1) | |
return field_name | |
def calculate_bbox(df, field): | |
bbox = df.loc[df['name'] == field].bounds | |
r = bbox.iloc[0] | |
return [r.minx, r.miny, r.maxx, r.maxy] | |
def get_available_dates_for_field(df, field, year, start_date='', end_date=''): | |
bbox = calculate_bbox(df, field) | |
token = SenHub(config).token | |
headers = utils.get_bearer_token_headers(token) | |
if start_date == '' or end_date == '': | |
start_date = f'{year}-01-01' | |
end_date = f'{year}-12-31' | |
data = f'{{ "collections": [ "sentinel-2-l2a" ], "datetime": "{start_date}T00:00:00Z/{end_date}T23:59:59Z", "bbox": {bbox}, "limit": 100, "distinct": "date" }}' | |
response = requests.post('https://services.sentinel-hub.com/api/v1/catalog/search', headers=headers, data=data) | |
try: | |
features = response.json()['features'] | |
except: | |
print(response.json()) | |
features = [] | |
return features | |
def get_and_cache_available_dates(_df, field, year, start_date, end_date): | |
dates = get_available_dates_for_field(_df, field, year, start_date, end_date) | |
print(f'Caching Dates for {field}') | |
return dates | |
def get_cuarted_df_for_field(df, field, date, metric, clientName): | |
curated_date_path = utils.get_curated_location_img_path(clientName, metric, date, field) | |
if curated_date_path is not None: | |
curated_df = gpd.read_file(curated_date_path) | |
else: | |
process.Download_image_in_given_date(clientName, metric, df, field, date) | |
process.mask_downladed_image(clientName, metric, df, field, date) | |
process.convert_maske_image_to_geodataframe(clientName, metric, df, field, date, df.crs) | |
curated_date_path = utils.get_curated_location_img_path(clientName, metric, date, field) | |
curated_df = gpd.read_file(curated_date_path) | |
return curated_df | |
def track(metric, field_name, src_df, client_name): | |
st.title(":green[Select Date and Start Monitoring]") | |
dates = [] | |
date = -1 | |
if 'dates' not in st.session_state: | |
st.session_state['dates'] = dates | |
else: | |
dates = st.session_state['dates'] | |
if 'date' not in st.session_state: | |
st.session_state['date'] = date | |
else: | |
date = st.session_state['date'] | |
if True: | |
start_date = '2024-01-01' | |
today = datetime.today() | |
end_date = today.strftime('%Y-%m-%d') | |
year = '2024' | |
dates = get_and_cache_available_dates(src_df, field_name, year, start_date, end_date) | |
# Add None to the end of the list to be used as a default value | |
#sort the dates from earliest to today | |
dates = sorted(dates) | |
#Add the dates to the session state | |
st.session_state['dates'] = dates | |
# Display the dropdown menu | |
if len(dates) > 0: | |
st.markdown(""" | |
<style> | |
.stSelectbox > div > div {cursor: pointer;} | |
</style> | |
""", unsafe_allow_html=True) | |
date = st.selectbox('Select Observation Date: ', dates, index=len(dates)-1, key=f'Select Date Dropdown Menu - {metric}') | |
if date != -1: | |
st.write('You selected:', date) | |
#Add the date to the session state | |
st.session_state['date'] = date | |
else: | |
st.write('Please Select A Date') | |
else: | |
st.info('No dates available for the selected field and dates range, select a different range or click the button to fetch the dates again') | |
st.markdown('---') | |
st.header('Show Field Data') | |
# If a field and a date are selected, display the field data | |
if date != -1: | |
# Get the field data at the selected date | |
with st.spinner('Loading Field Data...'): | |
# Get the metric data and cloud cover data for the selected field and date | |
metric_data = get_cuarted_df_for_field(src_df, field_name, date, metric, client_name) | |
cloud_cover_data = get_cuarted_df_for_field(src_df, field_name, date, 'CLP', client_name) | |
#Merge the metric and cloud cover data on the geometry column | |
field_data = metric_data.merge(cloud_cover_data, on='geometry') | |
# Display the field data | |
avg_clp = field_data[f'CLP_{date}'].mean() *100 | |
avg_metric = field_data[f'{metric}_{date}'].mean() | |
st.write(f'Field Data for (Field ID: {field_name}) on {date}') | |
col1,col3,col5,col2,col4 = st.columns(5) | |
col1.metric(f":orange[Average {metric}]", value=f"{avg_metric :.2f}") | |
col2.metric(":green[Cloud Cover]", value=f"{avg_clp :.2f}%") | |
#Get Avarage Cloud Cover | |
# If the avarage cloud cover is greater than 80%, display a warning message | |
if avg_clp > 80: | |
st.warning(f'⚠️ The Avarage Cloud Cover is {avg_clp}%') | |
st.info('Please Select A Different Date') | |
df = field_data.copy() | |
df['latitude'] = df['geometry'].y | |
df['longitude'] = df['geometry'].x | |
# Create a scatter plot | |
fig = px.scatter_mapbox( | |
df, | |
lat='latitude', | |
lon='longitude', | |
color=f'{metric}_{date}', | |
color_continuous_scale='RdYlGn', | |
range_color=(0, 1), | |
width= 800, | |
height=600, | |
size_max=15, | |
zoom=13, | |
) | |
# Add the base map | |
token = open("token.mapbox_token").read() | |
fig.update_layout(mapbox_style="satellite", mapbox_accesstoken=token) | |
st.plotly_chart(fig) | |
#Dwonload Links | |
# If the field data is not empty, display the download links | |
if len(field_data) > 0: | |
# Create two columns for the download links | |
download_as_shp_col, download_as_tiff_col = st.columns(2) | |
# Create a shapefile of the field data and add a download link | |
with download_as_shp_col: | |
#Set the shapefile name and path based on the field id, metric and date | |
extension = 'shp' | |
shapefilename = f"{field_name}_{metric}_{date}.{extension}" | |
path = f'./shapefiles/{field_name}/{metric}/{extension}' | |
# Create the target directory if it doesn't exist | |
os.makedirs(path, exist_ok=True) | |
# Save the field data as a shapefile | |
field_data.to_file(f'{path}/{shapefilename}') | |
# Create a zip file of the shapefile | |
files = [] | |
for i in os.listdir(path): | |
if os.path.isfile(os.path.join(path,i)): | |
if i[0:len(shapefilename)] == shapefilename: | |
files.append(os.path.join(path,i)) | |
zipFileName = f'{path}/{field_name}_{metric}_{date}.zip' | |
zipObj = ZipFile(zipFileName, 'w') | |
for file in files: | |
zipObj.write(file) | |
zipObj.close() | |
# Add a download link for the zip file | |
with open(zipFileName, 'rb') as f: | |
st.download_button('Download as ShapeFile', f,file_name=zipFileName) | |
# Get the tiff file path and create a download link | |
with download_as_tiff_col: | |
#get the tiff file path | |
tiff_path = utils.get_masked_location_img_path(client_name, metric, date, field_name) | |
# Add a download link for the tiff file | |
donwnload_filename = f'{metric}_{field_name}_{date}.tiff' | |
with open(tiff_path, 'rb') as f: | |
st.download_button('Download as Tiff File', f,file_name=donwnload_filename) | |
else: | |
st.info('Please Select A Field and A Date') | |
def monitor_fields(): | |
row1,row2 = st.columns([1,2]) | |
with row1: | |
st.title(":orange[Field Monitoring]") | |
current_user = greeting("Let's take a look how these fields are doing") | |
if os.path.exists(f"fields_{current_user}.parquet"): | |
gdf = gpd.read_parquet(f"fields_{current_user}.parquet") | |
field_name = select_field(gdf) | |
if field_name == "Select Field": | |
st.info("No Field Selected Yet!") | |
else: | |
metric = st.radio("Select Metric to Monitor", ["NDVI", "LAI", "CAB"], key="metric", index=0, help="Select the metric to monitor") | |
st.success(f"Monitoring {metric} for {field_name}") | |
with st.expander("Metrics Explanation", expanded=False): | |
st.write("NDVI: Normalized Difference Vegetation Index, Mainly used to monitor the health of vegetation") | |
st.write("LAI: Leaf Area Index, Mainly used to monitor the productivity of vegetation") | |
st.write("CAB: Chlorophyll Absorption in the Blue band, Mainly used to monitor the chlorophyll content in vegetation") | |
# st.write("NDMI: Normalized Difference Moisture Index, Mainly used to monitor the moisture content in vegetation") | |
st.info("More metrics and analysis features will be added soon") | |
else: | |
st.info("No Fields Added Yet!") | |
return | |
with row2: | |
if field_name != "Select Field": | |
track(metric, field_name, gdf, current_user) | |
if __name__ == '__main__': | |
check_authentication() | |
monitor_fields() |