Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,24 +4,47 @@ import gradio as gr
|
|
4 |
import numpy as np
|
5 |
from PIL import Image
|
6 |
from einops import rearrange
|
7 |
-
|
8 |
-
|
|
|
9 |
from gradio_imageslider import ImageSlider # Import ImageSlider
|
10 |
-
import cv2 # Import OpenCV for Canny edge detection
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
device = torch.device("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
21 |
|
22 |
def preprocess_image(image, target_width, target_height, crop=True):
|
23 |
if crop:
|
24 |
-
image =
|
25 |
original_width, original_height = image.size
|
26 |
|
27 |
# Resize to match the target size without stretching
|
@@ -42,50 +65,61 @@ def preprocess_image(image, target_width, target_height, crop=True):
|
|
42 |
|
43 |
def preprocess_canny_image(image, target_width, target_height, crop=True):
|
44 |
image = preprocess_image(image, target_width, target_height, crop=crop)
|
45 |
-
image =
|
46 |
-
image = cv2.Canny(image, 100, 200) # Apply Canny edge detection
|
47 |
-
image = Image.fromarray(image)
|
48 |
return image
|
49 |
|
50 |
-
|
|
|
51 |
if random_seed:
|
52 |
seed = np.random.randint(0, 10000)
|
53 |
|
54 |
if not os.path.isdir("./controlnet_results/"):
|
55 |
os.makedirs("./controlnet_results/")
|
56 |
|
57 |
-
torch.
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
|
|
|
|
|
60 |
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
#
|
64 |
-
image = pipe(
|
65 |
-
prompt,
|
66 |
-
control_image=control_image,
|
67 |
-
control_mode=control_mode,
|
68 |
-
width=width,
|
69 |
-
height=height,
|
70 |
-
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
71 |
-
num_inference_steps=num_steps,
|
72 |
-
guidance_scale=guidance,
|
73 |
-
).images[0]
|
74 |
-
|
75 |
-
return [control_image, image] # Return both images for slider
|
76 |
|
77 |
interface = gr.Interface(
|
78 |
fn=generate_image,
|
79 |
inputs=[
|
80 |
gr.Textbox(label="Prompt"),
|
81 |
gr.Image(type="pil", label="Control Image"),
|
82 |
-
gr.Slider(step=1, minimum=1, maximum=64, value=
|
83 |
-
gr.Slider(minimum=0.1, maximum=10, value=
|
84 |
gr.Slider(minimum=128, maximum=2048, step=128, value=1024, label="Width"),
|
85 |
gr.Slider(minimum=128, maximum=2048, step=128, value=1024, label="Height"),
|
86 |
gr.Number(value=42, label="Seed"),
|
87 |
-
gr.Checkbox(label="Random Seed")
|
88 |
-
gr.Radio(choices=[0, 1, 2, 3, 4, 5, 6], value=0, label="Control Mode")
|
89 |
],
|
90 |
outputs=ImageSlider(label="Before / After"), # Use ImageSlider as the output
|
91 |
title="FLUX.1 Controlnet Canny",
|
@@ -94,3 +128,4 @@ interface = gr.Interface(
|
|
94 |
|
95 |
if __name__ == "__main__":
|
96 |
interface.launch()
|
|
|
|
4 |
import numpy as np
|
5 |
from PIL import Image
|
6 |
from einops import rearrange
|
7 |
+
import requests
|
8 |
+
import spaces
|
9 |
+
from huggingface_hub import login
|
10 |
from gradio_imageslider import ImageSlider # Import ImageSlider
|
|
|
11 |
|
12 |
+
from image_datasets.canny_dataset import canny_processor, c_crop
|
13 |
+
from src.flux.sampling import denoise_controlnet, get_noise, get_schedule, prepare, unpack
|
14 |
+
from src.flux.util import load_ae, load_clip, load_t5, load_flow_model, load_controlnet, load_safetensors
|
15 |
|
16 |
+
# Download and load the ControlNet model
|
17 |
+
model_url = "https://huggingface.co/XLabs-AI/flux-controlnet-canny-v3/resolve/main/flux-canny-controlnet-v3.safetensors?download=true"
|
18 |
+
model_path = "./flux-canny-controlnet-v3.safetensors"
|
19 |
+
if not os.path.exists(model_path):
|
20 |
+
response = requests.get(model_url)
|
21 |
+
with open(model_path, 'wb') as f:
|
22 |
+
f.write(response.content)
|
23 |
+
|
24 |
+
# Source: https://github.com/XLabs-AI/x-flux.git
|
25 |
+
name = "flux-dev"
|
26 |
device = torch.device("cuda")
|
27 |
+
offload = False
|
28 |
+
is_schnell = name == "flux-schnell"
|
29 |
+
|
30 |
+
model, ae, t5, clip, controlnet = None, None, None, None, None
|
31 |
+
|
32 |
+
def load_models():
|
33 |
+
global model, ae, t5, clip, controlnet
|
34 |
+
t5 = load_t5(device, max_length=256 if is_schnell else 512)
|
35 |
+
clip = load_clip(device)
|
36 |
+
model = load_flow_model(name, device=device)
|
37 |
+
ae = load_ae(name, device=device)
|
38 |
+
controlnet = load_controlnet(name, device).to(device).to(torch.bfloat16)
|
39 |
|
40 |
+
checkpoint = load_safetensors(model_path)
|
41 |
+
controlnet.load_state_dict(checkpoint, strict=False)
|
42 |
+
|
43 |
+
load_models()
|
44 |
|
45 |
def preprocess_image(image, target_width, target_height, crop=True):
|
46 |
if crop:
|
47 |
+
image = c_crop(image) # Crop the image to square
|
48 |
original_width, original_height = image.size
|
49 |
|
50 |
# Resize to match the target size without stretching
|
|
|
65 |
|
66 |
def preprocess_canny_image(image, target_width, target_height, crop=True):
|
67 |
image = preprocess_image(image, target_width, target_height, crop=crop)
|
68 |
+
image = canny_processor(image)
|
|
|
|
|
69 |
return image
|
70 |
|
71 |
+
@spaces.GPU(duration=120)
|
72 |
+
def generate_image(prompt, control_image, num_steps=50, guidance=4, width=512, height=512, seed=42, random_seed=False):
|
73 |
if random_seed:
|
74 |
seed = np.random.randint(0, 10000)
|
75 |
|
76 |
if not os.path.isdir("./controlnet_results/"):
|
77 |
os.makedirs("./controlnet_results/")
|
78 |
|
79 |
+
torch_device = torch.device("cuda")
|
80 |
+
|
81 |
+
model.to(torch_device)
|
82 |
+
t5.to(torch_device)
|
83 |
+
clip.to(torch_device)
|
84 |
+
ae.to(torch_device)
|
85 |
+
controlnet.to(torch_device)
|
86 |
|
87 |
+
width = 16 * width // 16
|
88 |
+
height = 16 * height // 16
|
89 |
+
timesteps = get_schedule(num_steps, (width // 8) * (height // 8) // (16 * 16), shift=(not is_schnell))
|
90 |
|
91 |
+
processed_input = preprocess_image(control_image, width, height)
|
92 |
+
canny_processed = preprocess_canny_image(control_image, width, height)
|
93 |
+
controlnet_cond = torch.from_numpy((np.array(canny_processed) / 127.5) - 1)
|
94 |
+
controlnet_cond = controlnet_cond.permute(2, 0, 1).unsqueeze(0).to(torch.bfloat16).to(torch_device)
|
95 |
+
|
96 |
+
torch.manual_seed(seed)
|
97 |
+
with torch.no_grad():
|
98 |
+
x = get_noise(1, height, width, device=torch_device, dtype=torch.bfloat16, seed=seed)
|
99 |
+
inp_cond = prepare(t5=t5, clip=clip, img=x, prompt=prompt)
|
100 |
+
|
101 |
+
x = denoise_controlnet(model, **inp_cond, controlnet=controlnet, timesteps=timesteps, guidance=guidance, controlnet_cond=controlnet_cond)
|
102 |
+
|
103 |
+
x = unpack(x.float(), height, width)
|
104 |
+
x = ae.decode(x)
|
105 |
+
|
106 |
+
x1 = x.clamp(-1, 1)
|
107 |
+
x1 = rearrange(x1[-1], "c h w -> h w c")
|
108 |
+
output_img = Image.fromarray((127.5 * (x1 + 1.0)).cpu().byte().numpy())
|
109 |
|
110 |
+
return [processed_input, output_img] # Return both images for slider
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
interface = gr.Interface(
|
113 |
fn=generate_image,
|
114 |
inputs=[
|
115 |
gr.Textbox(label="Prompt"),
|
116 |
gr.Image(type="pil", label="Control Image"),
|
117 |
+
gr.Slider(step=1, minimum=1, maximum=64, value=28, label="Num Steps"),
|
118 |
+
gr.Slider(minimum=0.1, maximum=10, value=4, label="Guidance"),
|
119 |
gr.Slider(minimum=128, maximum=2048, step=128, value=1024, label="Width"),
|
120 |
gr.Slider(minimum=128, maximum=2048, step=128, value=1024, label="Height"),
|
121 |
gr.Number(value=42, label="Seed"),
|
122 |
+
gr.Checkbox(label="Random Seed")
|
|
|
123 |
],
|
124 |
outputs=ImageSlider(label="Before / After"), # Use ImageSlider as the output
|
125 |
title="FLUX.1 Controlnet Canny",
|
|
|
128 |
|
129 |
if __name__ == "__main__":
|
130 |
interface.launch()
|
131 |
+
|