# Importing Necessary Libraries import gradio as gr from llama_index import download_loader, ServiceContext, VectorStoreIndex from llama_index.embeddings import HuggingFaceEmbedding from llama_index import Prompt import torch device = torch.device("cpu") # Loading the Zephyr Model using Llama CPP from llama_index.llms import LlamaCPP llm = LlamaCPP( model_url='https://huggingface.co./TheBloke/zephyr-7B-beta-GGUF/resolve/main/zephyr-7b-beta.Q5_K_M.gguf?download=true', model_path=None, temperature=0.5, max_new_tokens=2000, context_window=3900, # set to at least 1 to use GPU model_kwargs={"n_gpu_layers": 0} ) # Loading Embedding Model embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-base-en-v1.5") # Defining custom Prompt TEMPLATE_STR = ( '''You are an helpful and responsible AI assistant who is excited to help user and answer the question politely but will never harm humans or engage in the activity that causes harm to anyone. Use the given context below if useful. {context} <|user|>\n {query_str}\n <|assistant|>\n''' ) QA_TEMPLATE = Prompt(TEMPLATE_STR) # User Interface functions def build_the_bot(file): global service_context, index if file is not None and file.name.endswith(".xlsx"): # Loading Data PandasExcelReader = download_loader("PandasExcelReader") loader = PandasExcelReader(pandas_config={"header": 0}) documents = loader.load_data(file=file) service_context = ServiceContext.from_defaults( chunk_size=150,chunk_overlap=10, llm=llm,embed_model=embed_model, ) index = VectorStoreIndex.from_documents(documents, service_context=service_context,text_qa_template=QA_TEMPLATE) return (gr.update(visible=True),gr.update(visible=True),gr.update(visible=True),gr.update(visible=True,)) #(4 gr.update because the outputs are 4 of upload.change) else: # Display a message if no file is uploaded return (gr.Textbox(placeholder="Please upload an excel file, refresh the page to restart the app"),gr.update(visible=True),gr.update(visible=False),gr.update(visible=True)) def chat(user_input,history): if user_input=="": return "Please write your query so that I can assist you even better.",history else: global service_context, index query_engine = index.as_query_engine(streaming=False) bot_response = query_engine.query(user_input) bot_response = str(bot_response) history.append((user_input, bot_response)) return "", history def clear_everything(): return (None, None, None) # Adding themes in UI Interface custom_theme = gr.themes.Monochrome() # UI Design and Logic with gr.Blocks(theme=custom_theme,title="Marketing Email Generator") as demo: gr.HTML("