|
import gradio as gr |
|
import torch |
|
import numpy as np |
|
import modin.pandas as pd |
|
from PIL import Image |
|
from diffusers import DiffusionPipeline |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
pipe = DiffusionPipeline.from_pretrained("prompthero/openjourney-v4", torch_dtype=torch.float16, safety_checker=None) |
|
pipe = pipe.to(device) |
|
|
|
def genie (prompt, scale, steps, Seed): |
|
generator = torch.Generator(device=device).manual_seed(Seed) |
|
images = pipe(prompt, num_inference_steps=steps, guidance_scale=scale, generator=generator).images[0] |
|
return images |
|
|
|
gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'), |
|
gr.Slider(1, maximum=25, value=10, step=.25, label='Prompt Guidance Scale:', interactive=True), |
|
gr.Slider(1, maximum=200, value=100, step=1, label='Number of Iterations: 50 is typically fine.'), |
|
gr.Slider(minimum=1, step=10, maximum=999999999999999999, randomize=True, interactive=True)], |
|
outputs=gr.Image(label='512x512 Generated Image'), |
|
title="OpenJourney V4 GPU", |
|
description="OJ V4 GPU. Ultra Fast, now running on a T4 <br><br><b/>Warning: This Demo is capable of producing NSFW content.", |
|
article = "Code Monkey: <a href=\"https://huggingface.co./Manjushri\">Manjushri</a>").launch(debug=True, max_threads=True) |