Spaces:
Sleeping
Sleeping
import time | |
import streamlit as st | |
from llama_index import ServiceContext, StorageContext, set_global_service_context, VectorStoreIndex | |
from llama_index.embeddings import LangchainEmbedding | |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings | |
from llama_index.llms import LlamaCPP | |
from llama_index.llms.llama_utils import messages_to_prompt, completion_to_prompt | |
from PyPDF2 import PdfReader | |
# LLM Intialization | |
llm = LlamaCPP( | |
model_url=None, # We'll load locally. | |
# Trying small version of an already small model | |
model_path='./Models/phi-2.Q4_K_M.gguf', | |
temperature=0.1, | |
max_new_tokens=512, | |
context_window=2048, # Phi-2 2K context window - this could be a limitation for RAG as it has to put the content into this context window | |
generate_kwargs={}, | |
# set to at least 1 to use GPU | |
# This is small model and there's no indication of layers offloaded to the GPU | |
model_kwargs={"n_gpu_layers": 32}, | |
messages_to_prompt=messages_to_prompt, | |
completion_to_prompt=completion_to_prompt, | |
verbose=True | |
) | |
# Embedding Initialization | |
embed_model = LangchainEmbedding( | |
HuggingFaceEmbeddings(model_name="BAAI/bge-small-en-v1.5") | |
) | |
# Service Context | |
service_context = ServiceContext.from_defaults( | |
chunk_size=128, # Number of tokens in each chunk | |
chunk_overlap=20, | |
# This should be automatically set with the model metadata but we'll force it to ensure wit is | |
context_window=2048, | |
num_output=768, # Maximum output from the LLM, let's put this at 512 to ensure LlamaIndex saves that "space" for the output | |
llm=llm, | |
embed_model=embed_model | |
) | |
set_global_service_context(service_context) | |
# Storage Context | |
storage_context = StorageContext.from_defaults() | |
# Model Specific Prompt | |
def modelspecific_prompt(promptmessage): | |
# Model Specific Prompt | |
# As per https://huggingface.co./TheBloke/phi-2-GGUF | |
return f"Instruct: {promptmessage}\nOutput:" | |
# PDF to Text | |
def extract_text_from_pdf(pdf): | |
pdf_reader = PdfReader(pdf) | |
return ''.join(page.extract_text() for page in pdf_reader.pages) | |
st.title("Llama-CPP Local LLM with RAG (Phi-2 RAG + TinyLlama CHAT)") | |
pdf = st.file_uploader("Upload a PDF file", type=["pdf"]) | |
if pdf is not None: | |
documents = extract_text_from_pdf(pdf) | |
nodes = (service_context.node_parser.get_nodes_from_documents(documents)) | |
storage_context.docstore.add_documents(nodes) | |
index = (VectorStoreIndex.from_documents( | |
documents, service_context=service_context, storage_context=storage_context, llm=llm)) | |
chat_engine = index.as_chat_engine(chat_mode="simple", verbose=True) | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
# Display chat messages from history on app rerun | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Accept user input | |
if prompt := st.chat_input("What is up?"): | |
# Add user message to chat history | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
# Display user message in chat message container | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
# Display assistant response in chat message container | |
with st.chat_message("assistant"): | |
message_placeholder = st.empty() | |
full_response = "" | |
assistant_response = chat_engine.chat(modelspecific_prompt(prompt)) | |
# Simulate stream of response with milliseconds delay | |
for chunk in assistant_response.split(): | |
full_response += chunk + " " | |
time.sleep(0.05) | |
# Add a blinking cursor to simulate typing | |
message_placeholder.markdown(full_response + "▌") | |
message_placeholder.markdown(full_response) | |
# Add assistant response to chat history | |
st.session_state.messages.append( | |
{"role": "assistant", "content": full_response}) | |