Spaces:
Runtime error
Runtime error
constexpr int kVecSize = 1 << 18; | |
static float drawFromGaussianPdf(std::mt19937& rndm) { | |
constexpr double kScale = 1./(1. + std::mt19937::max()); | |
constexpr double kTwoPiTimesScale = 6.28318530717958647692*kScale; | |
static float lastX; | |
static bool haveX = false; | |
if (haveX) { haveX = false; return lastX; } | |
auto r = sqrt(-2*log(1 - kScale*rndm())); | |
auto phi = kTwoPiTimesScale * rndm(); | |
lastX = r*sin(phi); | |
haveX = true; | |
return r*cos(phi); | |
} | |
static void fillRandomGaussianFloats(std::vector<float>& values, std::mt19937& rndm, float mean = 0) { | |
for (auto& v : values) v = mean + drawFromGaussianPdf(rndm); | |
} | |
// Copy-pasted from ggml.c | |
typedef struct { | |
float d; // delta | |
uint8_t qs[QK4_0 / 2]; // nibbles / quants | |
} block_q4_0; | |
static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding"); | |
typedef struct { | |
float d; // delta | |
float m; // min | |
uint8_t qs[QK4_1 / 2]; // nibbles / quants | |
} block_q4_1; | |
static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK4_1 / 2, "wrong q4_1 block size/padding"); | |
// Copy-pasted from ggml.c | |
typedef struct { | |
float d; // delta | |
int8_t qs[QK8_0]; // quants | |
} block_q8_0; | |
static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding"); | |
// "Scalar" dot product between the quantized vector x and float vector y | |
inline double dot(int n, const block_q4_0* x, const float* y) { | |
const static float kValues[16] = {-8.f, -7.f, -6.f, -5.f, -4.f, -3.f, -2.f, -1.f, 0.f, 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f}; | |
constexpr uint32_t kMask1 = 0x0f0f0f0f; | |
uint32_t u1, u2; | |
auto q1 = (const uint8_t*)&u1; | |
auto q2 = (const uint8_t*)&u2; | |
double sum = 0; | |
for (int i=0; i<n; ++i) { | |
float d = x->d; | |
auto u = (const uint32_t*)x->qs; | |
float s = 0; | |
for (int k=0; k<4; ++k) { | |
u1 = u[k] & kMask1; | |
u2 = (u[k] >> 4) & kMask1; | |
s += y[0]*kValues[q1[0]] + y[1]*kValues[q2[0]] + | |
y[2]*kValues[q1[1]] + y[3]*kValues[q2[1]] + | |
y[4]*kValues[q1[2]] + y[5]*kValues[q2[2]] + | |
y[6]*kValues[q1[3]] + y[7]*kValues[q2[3]]; | |
y += 8; | |
} | |
sum += s*d; | |
++x; | |
} | |
return sum; | |
} | |
// Alternative version of the above. Faster on my Mac (~45 us vs ~55 us per dot product), | |
// but about the same on X86_64 (Ryzen 7950X CPU). | |
inline double dot3(int n, const block_q4_0* x, const float* y) { | |
const static std::pair<float,float> kValues[256] = { | |
{-8.f, -8.f}, {-7.f, -8.f}, {-6.f, -8.f}, {-5.f, -8.f}, {-4.f, -8.f}, {-3.f, -8.f}, {-2.f, -8.f}, {-1.f, -8.f}, | |
{ 0.f, -8.f}, { 1.f, -8.f}, { 2.f, -8.f}, { 3.f, -8.f}, { 4.f, -8.f}, { 5.f, -8.f}, { 6.f, -8.f}, { 7.f, -8.f}, | |
{-8.f, -7.f}, {-7.f, -7.f}, {-6.f, -7.f}, {-5.f, -7.f}, {-4.f, -7.f}, {-3.f, -7.f}, {-2.f, -7.f}, {-1.f, -7.f}, | |
{ 0.f, -7.f}, { 1.f, -7.f}, { 2.f, -7.f}, { 3.f, -7.f}, { 4.f, -7.f}, { 5.f, -7.f}, { 6.f, -7.f}, { 7.f, -7.f}, | |
{-8.f, -6.f}, {-7.f, -6.f}, {-6.f, -6.f}, {-5.f, -6.f}, {-4.f, -6.f}, {-3.f, -6.f}, {-2.f, -6.f}, {-1.f, -6.f}, | |
{ 0.f, -6.f}, { 1.f, -6.f}, { 2.f, -6.f}, { 3.f, -6.f}, { 4.f, -6.f}, { 5.f, -6.f}, { 6.f, -6.f}, { 7.f, -6.f}, | |
{-8.f, -5.f}, {-7.f, -5.f}, {-6.f, -5.f}, {-5.f, -5.f}, {-4.f, -5.f}, {-3.f, -5.f}, {-2.f, -5.f}, {-1.f, -5.f}, | |
{ 0.f, -5.f}, { 1.f, -5.f}, { 2.f, -5.f}, { 3.f, -5.f}, { 4.f, -5.f}, { 5.f, -5.f}, { 6.f, -5.f}, { 7.f, -5.f}, | |
{-8.f, -4.f}, {-7.f, -4.f}, {-6.f, -4.f}, {-5.f, -4.f}, {-4.f, -4.f}, {-3.f, -4.f}, {-2.f, -4.f}, {-1.f, -4.f}, | |
{ 0.f, -4.f}, { 1.f, -4.f}, { 2.f, -4.f}, { 3.f, -4.f}, { 4.f, -4.f}, { 5.f, -4.f}, { 6.f, -4.f}, { 7.f, -4.f}, | |
{-8.f, -3.f}, {-7.f, -3.f}, {-6.f, -3.f}, {-5.f, -3.f}, {-4.f, -3.f}, {-3.f, -3.f}, {-2.f, -3.f}, {-1.f, -3.f}, | |
{ 0.f, -3.f}, { 1.f, -3.f}, { 2.f, -3.f}, { 3.f, -3.f}, { 4.f, -3.f}, { 5.f, -3.f}, { 6.f, -3.f}, { 7.f, -3.f}, | |
{-8.f, -2.f}, {-7.f, -2.f}, {-6.f, -2.f}, {-5.f, -2.f}, {-4.f, -2.f}, {-3.f, -2.f}, {-2.f, -2.f}, {-1.f, -2.f}, | |
{ 0.f, -2.f}, { 1.f, -2.f}, { 2.f, -2.f}, { 3.f, -2.f}, { 4.f, -2.f}, { 5.f, -2.f}, { 6.f, -2.f}, { 7.f, -2.f}, | |
{-8.f, -1.f}, {-7.f, -1.f}, {-6.f, -1.f}, {-5.f, -1.f}, {-4.f, -1.f}, {-3.f, -1.f}, {-2.f, -1.f}, {-1.f, -1.f}, | |
{ 0.f, -1.f}, { 1.f, -1.f}, { 2.f, -1.f}, { 3.f, -1.f}, { 4.f, -1.f}, { 5.f, -1.f}, { 6.f, -1.f}, { 7.f, -1.f}, | |
{-8.f, 0.f}, {-7.f, 0.f}, {-6.f, 0.f}, {-5.f, 0.f}, {-4.f, 0.f}, {-3.f, 0.f}, {-2.f, 0.f}, {-1.f, 0.f}, | |
{ 0.f, 0.f}, { 1.f, 0.f}, { 2.f, 0.f}, { 3.f, 0.f}, { 4.f, 0.f}, { 5.f, 0.f}, { 6.f, 0.f}, { 7.f, 0.f}, | |
{-8.f, 1.f}, {-7.f, 1.f}, {-6.f, 1.f}, {-5.f, 1.f}, {-4.f, 1.f}, {-3.f, 1.f}, {-2.f, 1.f}, {-1.f, 1.f}, | |
{ 0.f, 1.f}, { 1.f, 1.f}, { 2.f, 1.f}, { 3.f, 1.f}, { 4.f, 1.f}, { 5.f, 1.f}, { 6.f, 1.f}, { 7.f, 1.f}, | |
{-8.f, 2.f}, {-7.f, 2.f}, {-6.f, 2.f}, {-5.f, 2.f}, {-4.f, 2.f}, {-3.f, 2.f}, {-2.f, 2.f}, {-1.f, 2.f}, | |
{ 0.f, 2.f}, { 1.f, 2.f}, { 2.f, 2.f}, { 3.f, 2.f}, { 4.f, 2.f}, { 5.f, 2.f}, { 6.f, 2.f}, { 7.f, 2.f}, | |
{-8.f, 3.f}, {-7.f, 3.f}, {-6.f, 3.f}, {-5.f, 3.f}, {-4.f, 3.f}, {-3.f, 3.f}, {-2.f, 3.f}, {-1.f, 3.f}, | |
{ 0.f, 3.f}, { 1.f, 3.f}, { 2.f, 3.f}, { 3.f, 3.f}, { 4.f, 3.f}, { 5.f, 3.f}, { 6.f, 3.f}, { 7.f, 3.f}, | |
{-8.f, 4.f}, {-7.f, 4.f}, {-6.f, 4.f}, {-5.f, 4.f}, {-4.f, 4.f}, {-3.f, 4.f}, {-2.f, 4.f}, {-1.f, 4.f}, | |
{ 0.f, 4.f}, { 1.f, 4.f}, { 2.f, 4.f}, { 3.f, 4.f}, { 4.f, 4.f}, { 5.f, 4.f}, { 6.f, 4.f}, { 7.f, 4.f}, | |
{-8.f, 5.f}, {-7.f, 5.f}, {-6.f, 5.f}, {-5.f, 5.f}, {-4.f, 5.f}, {-3.f, 5.f}, {-2.f, 5.f}, {-1.f, 5.f}, | |
{ 0.f, 5.f}, { 1.f, 5.f}, { 2.f, 5.f}, { 3.f, 5.f}, { 4.f, 5.f}, { 5.f, 5.f}, { 6.f, 5.f}, { 7.f, 5.f}, | |
{-8.f, 6.f}, {-7.f, 6.f}, {-6.f, 6.f}, {-5.f, 6.f}, {-4.f, 6.f}, {-3.f, 6.f}, {-2.f, 6.f}, {-1.f, 6.f}, | |
{ 0.f, 6.f}, { 1.f, 6.f}, { 2.f, 6.f}, { 3.f, 6.f}, { 4.f, 6.f}, { 5.f, 6.f}, { 6.f, 6.f}, { 7.f, 6.f}, | |
{-8.f, 7.f}, {-7.f, 7.f}, {-6.f, 7.f}, {-5.f, 7.f}, {-4.f, 7.f}, {-3.f, 7.f}, {-2.f, 7.f}, {-1.f, 7.f}, | |
{ 0.f, 7.f}, { 1.f, 7.f}, { 2.f, 7.f}, { 3.f, 7.f}, { 4.f, 7.f}, { 5.f, 7.f}, { 6.f, 7.f}, { 7.f, 7.f} | |
}; | |
double sum = 0; | |
for (int i=0; i<n; ++i) { | |
float d = x->d; | |
auto q = x->qs; | |
float s = 0; | |
for (int k=0; k<4; ++k) { | |
s += y[0]*kValues[q[0]].first + y[1]*kValues[q[0]].second + | |
y[2]*kValues[q[1]].first + y[3]*kValues[q[1]].second + | |
y[4]*kValues[q[2]].first + y[5]*kValues[q[2]].second + | |
y[6]*kValues[q[3]].first + y[7]*kValues[q[3]].second; | |
y += 8; q += 4; | |
} | |
sum += s*d; | |
++x; | |
} | |
return sum; | |
} | |
inline double dot41(int n, const block_q4_1* x, const float* y) { | |
const static float kValues[16] = {0.f, 1.f, 2.f, 3.f, 4.f, 5.f, 6.f, 7.f, 8.f, 9.f, 10.f, 11.f, 12.f, 13.f, 14.f, 15.f}; | |
constexpr uint32_t kMask1 = 0x0f0f0f0f; | |
uint32_t u1, u2; | |
auto q1 = (const uint8_t*)&u1; | |
auto q2 = (const uint8_t*)&u2; | |
double sum = 0; | |
for (int i=0; i<n; ++i) { | |
auto u = (const uint32_t*)x->qs; | |
float s = 0, s1 = 0; | |
for (int k=0; k<4; ++k) { | |
u1 = u[k] & kMask1; | |
u2 = (u[k] >> 4) & kMask1; | |
s += y[0]*kValues[q1[0]] + y[1]*kValues[q2[0]] + | |
y[2]*kValues[q1[1]] + y[3]*kValues[q2[1]] + | |
y[4]*kValues[q1[2]] + y[5]*kValues[q2[2]] + | |
y[6]*kValues[q1[3]] + y[7]*kValues[q2[3]]; | |
s1 += y[0] + y[1] + y[2] + y[3] + y[4] + y[5] + y[6] + y[7]; | |
y += 8; | |
} | |
sum += s*x->d + s1*x->m; | |
++x; | |
} | |
return sum; | |
} | |
// Copy-pasted from ggml.c | |
static void quantize_row_q8_0_reference(const float *x, block_q8_0 *y, int k) { | |
assert(k % QK8_0 == 0); | |
const int nb = k / QK8_0; | |
for (int i = 0; i < nb; i++) { | |
float amax = 0.0f; // absolute max | |
for (int l = 0; l < QK8_0; l++) { | |
const float v = x[i*QK8_0 + l]; | |
amax = std::max(amax, fabsf(v)); | |
} | |
const float d = amax / ((1 << 7) - 1); | |
const float id = d ? 1.0f/d : 0.0f; | |
y[i].d = d; | |
for (int l = 0; l < QK8_0; ++l) { | |
const float v = x[i*QK8_0 + l]*id; | |
y[i].qs[l] = roundf(v); | |
} | |
} | |
} | |
// Copy-pasted from ggml.c | |
static void dot_q4_q8(const int n, float* s, const void* vx, const void* vy) { | |
const int nb = n / QK8_0; | |
const block_q4_0* x = (const block_q4_0*)vx; | |
const block_q8_0* y = (const block_q8_0*)vy; | |
float sumf = 0; | |
for (int i = 0; i < nb; i++) { | |
const float d0 = x[i].d; | |
const float d1 = y[i].d; | |
const uint8_t * p0 = x[i].qs; | |
const int8_t * p1 = y[i].qs; | |
int sumi = 0; | |
for (int j = 0; j < QK8_0/2; j++) { | |
const uint8_t v0 = p0[j]; | |
const int i0 = (int8_t) (v0 & 0xf) - 8; | |
const int i1 = (int8_t) (v0 >> 4) - 8; | |
const int i2 = p1[2*j + 0]; | |
const int i3 = p1[2*j + 1]; | |
sumi += i0*i2 + i1*i3; | |
} | |
sumf += d0*d1*sumi; | |
} | |
*s = sumf; | |
} | |
int main(int argc, char** argv) { | |
int nloop = argc > 1 ? atoi(argv[1]) : 10; | |
bool scalar = argc > 2 ? atoi(argv[2]) : false; | |
bool useQ4_1 = argc > 3 ? atoi(argv[3]) : false; | |
if (scalar && useQ4_1) { | |
printf("It is not possible to use Q4_1 quantization and scalar implementations\n"); | |
return 1; | |
} | |
std::mt19937 rndm(1234); | |
std::vector<float> x1(kVecSize), y1(kVecSize); | |
int n4 = useQ4_1 ? kVecSize / QK4_1 : kVecSize / QK4_0; n4 = 64*((n4 + 63)/64); | |
int n8 = kVecSize / QK8_0; n8 = 64*((n8 + 63)/64); | |
const auto * funcs = ggml_get_type_traits(useQ4_1 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q4_0); | |
const auto * funcs_cpu = ggml_get_type_traits_cpu(useQ4_1 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q4_0); | |
std::vector<block_q4_0> q40; | |
std::vector<block_q4_1> q41; | |
if (useQ4_1) q41.resize(n4); | |
else q40.resize(n4); | |
std::vector<block_q8_0> q8(n8); | |
double sumt = 0, sumt2 = 0, maxt = 0; | |
double sumqt = 0, sumqt2 = 0, maxqt = 0; | |
double sum = 0, sumq = 0, exactSum = 0; | |
for (int iloop=0; iloop<nloop; ++iloop) { | |
// Fill vector x with random numbers | |
fillRandomGaussianFloats(x1, rndm); | |
// Fill vector y with random numbers | |
fillRandomGaussianFloats(y1, rndm); | |
// Compute the exact dot product | |
for (int k=0; k<kVecSize; ++k) exactSum += x1[k]*y1[k]; | |
// quantize x. | |
// Note, we do not include this in the timing as in practical application | |
// we already have the quantized model weights. | |
if (useQ4_1) { | |
funcs->from_float(x1.data(), q41.data(), kVecSize); | |
} else { | |
funcs->from_float(x1.data(), q40.data(), kVecSize); | |
} | |
// Now measure time the dot product needs using the "scalar" version above | |
auto t1 = std::chrono::high_resolution_clock::now(); | |
if (useQ4_1) sum += dot41(kVecSize / QK4_1, q41.data(), y1.data()); | |
else sum += dot(kVecSize / QK4_0, q40.data(), y1.data()); | |
auto t2 = std::chrono::high_resolution_clock::now(); | |
auto t = 1e-3*std::chrono::duration_cast<std::chrono::nanoseconds>(t2-t1).count(); | |
sumt += t; sumt2 += t*t; maxt = std::max(maxt, t); | |
// And now measure the time needed to quantize y and perform the dot product with the quantized y | |
t1 = std::chrono::high_resolution_clock::now(); | |
float result; | |
if (scalar) { | |
quantize_row_q8_0_reference(y1.data(), q8.data(), kVecSize); | |
dot_q4_q8(kVecSize, &result, q40.data(), q8.data()); | |
} | |
else { | |
const auto * vdot = ggml_get_type_traits(funcs_cpu->vec_dot_type); | |
vdot->from_float(y1.data(), q8.data(), kVecSize); | |
if (useQ4_1) funcs_cpu->vec_dot(kVecSize, &result, 0, q41.data(), 0, q8.data(), 0, 1); | |
else funcs_cpu->vec_dot(kVecSize, &result, 0, q40.data(), 0, q8.data(), 0, 1); | |
} | |
sumq += result; | |
t2 = std::chrono::high_resolution_clock::now(); | |
t = 1e-3*std::chrono::duration_cast<std::chrono::nanoseconds>(t2-t1).count(); | |
sumqt += t; sumqt2 += t*t; maxqt = std::max(maxqt, t); | |
} | |
// Report the time (and the average of the dot products so the compiler does not come up with the idea | |
// of optimizing away the function calls after figuring that the result is not used). | |
sum /= nloop; sumq /= nloop; | |
exactSum /= nloop; | |
printf("Exact result: <dot> = %g\n",exactSum); | |
printf("<dot> = %g, %g\n",sum,sumq); | |
sumt /= nloop; sumt2 /= nloop; sumt2 -= sumt*sumt; | |
if (sumt2 > 0) sumt2 = sqrt(sumt2); | |
printf("time = %g +/- %g us. maxt = %g us\n",sumt,sumt2,maxt); | |
sumqt /= nloop; sumqt2 /= nloop; sumqt2 -= sumqt*sumqt; | |
if (sumqt2 > 0) sumqt2 = sqrt(sumqt2); | |
printf("timeq = %g +/- %g us. maxt = %g us\n",sumqt,sumqt2,maxqt); | |
return 0; | |
} | |