Spaces:
Runtime error
Runtime error
static bool g_verbose = false; | |
struct tensor_transformation { | |
struct ggml_tensor * in; | |
struct ggml_tensor * out; | |
bool is_copy; | |
}; | |
static std::string get_kv_str(struct gguf_context * ctx_gguf, const std::string & key){ | |
int id = gguf_find_key(ctx_gguf, key.c_str()); | |
return id < 0 ? "" : std::string(gguf_get_val_str(ctx_gguf, id)); | |
} | |
static float get_kv_f32(struct gguf_context * ctx_gguf, const std::string & key) { | |
int id = gguf_find_key(ctx_gguf, key.c_str()); | |
return id < 0 ? 0.0f : gguf_get_val_f32(ctx_gguf, id); | |
} | |
static void zeros(std::ofstream & file, size_t n) { | |
char zero = 0; | |
for (size_t i = 0; i < n; ++i) { | |
file.write(&zero, 1); | |
} | |
} | |
static std::string ggml_ne_string(const ggml_tensor * t) { | |
std::string str; | |
for (int i = 0; i < GGML_MAX_DIMS; ++i) { | |
str += std::to_string(t->ne[i]); | |
if (i + 1 < GGML_MAX_DIMS) { | |
str += ", "; | |
} | |
} | |
return str; | |
} | |
static struct gguf_context * load_gguf(std::string & fname, struct ggml_context ** ctx_ggml) { | |
struct gguf_init_params params = { | |
/*.no_alloc = */ true, | |
/*.ctx = */ ctx_ggml, | |
}; | |
struct gguf_context * ctx_gguf = gguf_init_from_file(fname.c_str(), params); | |
if (!ctx_gguf) { | |
throw std::runtime_error("failed to load input GGUF from " + fname); | |
} | |
return ctx_gguf; | |
} | |
struct file_input { | |
struct ggml_context * ctx_meta = nullptr; | |
struct gguf_context * ctx_gguf = nullptr; | |
std::ifstream f_in; | |
std::map<std::string, ggml_tensor *> tensors; | |
float alpha; | |
float scale; | |
file_input(std::string & fname, float scale): f_in(fname, std::ios::binary), scale(scale) { | |
if (!f_in.is_open()) { | |
throw std::runtime_error("failed to open input gguf from " + fname); | |
} | |
ctx_gguf = load_gguf(fname, &ctx_meta); | |
alpha = get_kv_f32(ctx_gguf, "adapter.lora.alpha"); | |
printf("%s: loaded gguf from %s\n", __func__, fname.c_str()); | |
for (ggml_tensor * cur = ggml_get_first_tensor(ctx_meta); cur; cur = ggml_get_next_tensor(ctx_meta, cur)) { | |
std::string name(cur->name); | |
tensors[name] = cur; | |
if (g_verbose) { | |
printf("%s: %s\n", __func__, cur->name); | |
} | |
} | |
} | |
ggml_tensor * get_tensor(std::string name) { | |
if (tensors.find(name) == tensors.end()) { | |
return nullptr; | |
} | |
return tensors[name]; | |
} | |
void read_tensor_data(std::string name, std::vector<uint8_t> & buf) { | |
if (tensors.find(name) == tensors.end()) { | |
throw std::runtime_error("cannot find tensor with name: " + name); | |
} | |
auto len = ggml_nbytes(tensors[name]); | |
if (buf.size() < len) { | |
buf.resize(len); | |
} | |
auto i_tensor_in = gguf_find_tensor(ctx_gguf, name.c_str()); // idx of tensor in the input file | |
auto offset = gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, i_tensor_in); | |
f_in.seekg(offset); | |
f_in.read((char* )buf.data(), len); | |
} | |
~file_input() { | |
gguf_free(ctx_gguf); | |
ggml_free(ctx_meta); | |
} | |
}; | |
struct lora_merge_ctx { | |
// input base model + adapters | |
file_input base_model; | |
std::vector<std::unique_ptr<file_input>> adapters; | |
// for computing merged tensor | |
int n_threads; | |
ggml_backend_t backend = nullptr; | |
ggml_gallocr_t allocr = nullptr; | |
std::vector<uint8_t> read_buf; | |
// output file | |
struct gguf_context * ctx_out; | |
struct ggml_context * ctx_out_ggml; | |
std::ofstream fout; | |
lora_merge_ctx( | |
std::string & base_fname, | |
std::vector<common_lora_adapter_info> & lora_files, | |
std::string & outfile, | |
int n_threads) : base_model(base_fname, 0), n_threads(n_threads), fout(outfile, std::ios::binary) { | |
fout.exceptions(std::ofstream::failbit); // fail fast on write errors | |
if (gguf_find_key(base_model.ctx_gguf, LLM_KV_SPLIT_COUNT) >= 0) { | |
throw std::runtime_error("split model is not yet supported"); | |
} | |
for (auto & lora_inp : lora_files) { | |
auto fname = lora_inp.path; | |
auto scale = lora_inp.scale; | |
std::unique_ptr<file_input> adapter(new file_input(fname, scale)); | |
check_metadata_lora(adapter.get()); | |
adapters.push_back(std::move(adapter)); | |
} | |
ctx_out = gguf_init_empty(); | |
struct ggml_init_params params = { | |
/*.mem_size =*/ gguf_get_n_tensors(base_model.ctx_gguf)*ggml_tensor_overhead(), | |
/*.mem_buffer =*/ NULL, | |
/*.no_alloc =*/ true, | |
}; | |
ctx_out_ggml = ggml_init(params); | |
backend = ggml_backend_cpu_init(); | |
allocr = ggml_gallocr_new(ggml_backend_get_default_buffer_type(backend)); | |
} | |
void check_metadata_lora(file_input * adapter) { | |
auto general_type = get_kv_str(adapter->ctx_gguf, "general.type"); | |
if (general_type != "adapter") { | |
throw std::runtime_error("expect general.type to be 'adapter', but got: " + general_type); | |
} | |
auto adapter_type = get_kv_str(adapter->ctx_gguf, "adapter.type"); | |
if (adapter_type != "lora") { | |
throw std::runtime_error("expect adapter.type to be 'lora', but got: " + adapter_type); | |
} | |
auto general_arch_base = get_kv_str(base_model.ctx_gguf, "general.architecture"); | |
auto general_arch_lora = get_kv_str(adapter->ctx_gguf, "general.architecture"); | |
if (general_arch_base != general_arch_lora) { | |
throw std::runtime_error("model arch and LoRA arch mismatch"); | |
} | |
} | |
ggml_type get_out_tensor_type(struct ggml_tensor * t) { | |
if (t->type == GGML_TYPE_F32) { | |
return GGML_TYPE_F32; | |
} else { | |
return GGML_TYPE_F16; | |
} | |
} | |
void run_merge() { | |
// prepare metadata | |
gguf_set_kv(ctx_out, base_model.ctx_gguf); | |
// output is forced to f16 for now | |
gguf_set_val_u32(ctx_out, "general.file_type", LLAMA_FTYPE_MOSTLY_F16); | |
// check if all lora adapters have the same tensors | |
// TODO: remove this when we can support merging subset of adapters. Ref: https://github.com/ggerganov/llama.cpp/pull/8607#discussion_r1686027777 | |
static const char * err_no_subset_adapter = "Input adapters do not have the same list of tensors. This is not yet supported. Please merge the adapter one-by-one instead of merging all at once."; | |
if (adapters.size() > 1) { | |
for (size_t i = 1; i < adapters.size(); ++i) { | |
if (adapters[0]->tensors.size() != adapters[i]->tensors.size()) { | |
throw std::runtime_error(err_no_subset_adapter); | |
} | |
for (auto & it : adapters[i]->tensors) { | |
if (adapters[0]->get_tensor(it.first) == nullptr) { | |
throw std::runtime_error(err_no_subset_adapter); | |
} | |
} | |
} | |
} | |
// mapping base tensor to out tensor (same shape with base, but different type) | |
std::vector<tensor_transformation> trans; | |
for (auto & it : base_model.tensors) { | |
bool t_a = true; | |
bool t_b = true; | |
for (auto & adapter : adapters) { | |
t_a &= nullptr != adapter->get_tensor(it.first + ".lora_a"); | |
t_b &= nullptr != adapter->get_tensor(it.first + ".lora_b"); | |
} | |
auto base_tensor = it.second; | |
if (!t_a && !t_b) { | |
// only copy | |
struct ggml_tensor * cpy_tensor = ggml_dup_tensor(ctx_out_ggml, base_tensor); | |
ggml_set_name(cpy_tensor, base_tensor->name); | |
trans.push_back({ | |
cpy_tensor, | |
cpy_tensor, | |
true, | |
}); | |
gguf_add_tensor(ctx_out, cpy_tensor); | |
} else if (t_a && t_b) { | |
// need merging | |
struct ggml_tensor * out_tensor = ggml_new_tensor( | |
ctx_out_ggml, get_out_tensor_type(base_tensor), GGML_MAX_DIMS, base_tensor->ne); | |
ggml_set_name(out_tensor, base_tensor->name); | |
trans.push_back({ | |
base_tensor, | |
out_tensor, | |
false, | |
}); | |
gguf_add_tensor(ctx_out, out_tensor); | |
} else { | |
throw std::runtime_error("tensor " + it.first + " missing either lora_a or lora_b"); | |
} | |
} | |
// placeholder for the meta data | |
{ | |
size_t meta_size = gguf_get_meta_size(ctx_out); | |
zeros(fout, meta_size); | |
} | |
// process base model tensors | |
size_t n_merged = 0; | |
for (auto & it : trans) { | |
if (!it.is_copy) { | |
merge_tensor(it.in, it.out); | |
n_merged++; | |
} else { | |
copy_tensor(it.in); | |
} | |
} | |
// write output metadata | |
{ | |
std::vector<uint8_t> data(gguf_get_meta_size(ctx_out)); | |
gguf_get_meta_data(ctx_out, data.data()); | |
fout.seekp(0); | |
fout.write((const char *)data.data(), data.size()); | |
} | |
printf("%s : merged %ld tensors with lora adapters\n", __func__, n_merged); | |
printf("%s : wrote %ld tensors to output file\n", __func__, trans.size()); | |
} | |
void copy_tensor(struct ggml_tensor * base) { | |
printf("%s : %s [%s]\n", __func__, base->name, ggml_ne_string(base).c_str()); | |
size_t len = ggml_nbytes(base); | |
base_model.read_tensor_data(base->name, read_buf); | |
fout.write((char* )read_buf.data(), len); | |
zeros(fout, GGML_PAD(len, GGUF_DEFAULT_ALIGNMENT) - len); | |
} | |
void merge_tensor(struct ggml_tensor * base, struct ggml_tensor * out) { | |
std::string name_base(base->name); | |
std::string name_lora_a = name_base + ".lora_a"; | |
std::string name_lora_b = name_base + ".lora_b"; | |
printf("%s : %s [%s]\n", __func__, base->name, ggml_ne_string(base).c_str()); | |
// context for input tensor | |
std::vector<struct ggml_tensor *> inp_a(adapters.size()); | |
std::vector<struct ggml_tensor *> inp_b(adapters.size()); | |
struct ggml_init_params params { | |
/*.mem_size =*/ ggml_tensor_overhead()*(2+adapters.size()*2), | |
/*.mem_buffer =*/ NULL, | |
/*.no_alloc =*/ true, | |
}; | |
struct ggml_context * ctx = ggml_init(params); | |
// alloc tensors | |
struct ggml_tensor * inp_base = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, base->ne); | |
for (size_t i = 0; i < adapters.size(); ++i) { | |
auto t_a = adapters[i]->get_tensor(name_lora_a); | |
auto t_b = adapters[i]->get_tensor(name_lora_b); | |
// TODO: add support for quantized lora | |
if (ggml_is_quantized(t_a->type) || ggml_is_quantized(t_b->type)) { | |
throw std::runtime_error("quantized LoRA adapters is not supported, please retry with f16 or f32"); | |
} | |
inp_a[i] = ggml_dup_tensor(ctx, t_a); | |
inp_b[i] = ggml_dup_tensor(ctx, t_b); | |
} | |
ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx, backend); | |
// load base tensor to backend buffer | |
base_model.read_tensor_data(name_base, read_buf); | |
if (base->type != GGML_TYPE_F32) { | |
// optionally dequantize it | |
printf("%s : + dequantize base tensor from %s to F32\n", __func__, ggml_type_name(base->type)); | |
auto nels = ggml_nelements(inp_base); | |
const auto * qtype = ggml_get_type_traits(base->type); | |
std::vector<uint8_t> dequant_buf(nels * sizeof(float)); | |
qtype->to_float(read_buf.data(), (float *)dequant_buf.data(), nels); | |
ggml_backend_tensor_set(inp_base, dequant_buf.data(), 0, dequant_buf.size()); | |
} else { | |
ggml_backend_tensor_set(inp_base, read_buf.data(), 0, ggml_nbytes(inp_base)); | |
} | |
// load lora tensors to backend buffer | |
for (size_t i = 0; i < adapters.size(); ++i) { | |
adapters[i]->read_tensor_data(name_lora_a, read_buf); | |
ggml_backend_tensor_set(inp_a[i], read_buf.data(), 0, ggml_nbytes(inp_a[i])); | |
adapters[i]->read_tensor_data(name_lora_b, read_buf); | |
ggml_backend_tensor_set(inp_b[i], read_buf.data(), 0, ggml_nbytes(inp_b[i])); | |
} | |
// build graph | |
struct ggml_cgraph * gf; | |
{ | |
static size_t buf_size = ggml_tensor_overhead()*GGML_DEFAULT_GRAPH_SIZE + ggml_graph_overhead(); | |
static std::vector<uint8_t> buf(buf_size); | |
struct ggml_init_params params0 = { | |
/*.mem_size =*/ buf_size, | |
/*.mem_buffer =*/ buf.data(), | |
/*.no_alloc =*/ true, | |
}; | |
struct ggml_context * ctx0 = ggml_init(params0); | |
gf = ggml_new_graph(ctx0); | |
struct ggml_tensor * cur = inp_base; | |
for (size_t i = 0; i < adapters.size(); ++i) { | |
struct ggml_tensor * a_T = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_cast(ctx0, inp_a[i], GGML_TYPE_F32))); | |
struct ggml_tensor * delta = ggml_mul_mat(ctx0, a_T, ggml_cast(ctx0, inp_b[i], GGML_TYPE_F32)); | |
// scale | |
const float alpha = adapters[i]->alpha; | |
const float rank = (float) inp_b[i]->ne[0]; | |
const float scale = alpha ? adapters[i]->scale * alpha / rank : adapters[i]->scale; | |
delta = ggml_scale(ctx0, delta, scale); | |
cur = ggml_add(ctx0, delta, cur); | |
printf("%s : + merging from adapter[%ld] type=%s\n", __func__, i, ggml_type_name(inp_a[i]->type)); | |
printf("%s : input_scale=%f calculated_scale=%f rank=%d\n", __func__, adapters[i]->scale, scale, (int) inp_b[i]->ne[0]); | |
} | |
cur = ggml_cast(ctx0, cur, out->type); | |
printf("%s : + output type is %s\n", __func__, ggml_type_name(out->type)); | |
ggml_build_forward_expand(gf, cur); | |
ggml_free(ctx0); | |
} | |
// compute | |
{ | |
ggml_gallocr_alloc_graph(allocr, gf); | |
ggml_backend_cpu_set_n_threads(backend, n_threads); | |
ggml_backend_graph_compute(backend, gf); | |
} | |
// write data to output file | |
{ | |
auto * result = ggml_graph_node(gf, -1); | |
size_t len = ggml_nbytes(result); | |
if (read_buf.size() < len) { | |
read_buf.resize(len); | |
} | |
ggml_backend_tensor_get(result, read_buf.data(), 0, len); | |
fout.write((char* )read_buf.data(), len); | |
zeros(fout, GGML_PAD(len, GGUF_DEFAULT_ALIGNMENT) - len); | |
} | |
ggml_free(ctx); | |
ggml_backend_buffer_free(buffer); | |
} | |
~lora_merge_ctx() { | |
ggml_gallocr_free(allocr); | |
ggml_backend_free(backend); | |
gguf_free(ctx_out); | |
ggml_free(ctx_out_ggml); | |
} | |
}; | |
static void print_usage(int, char ** argv) { | |
printf("\nexample usage:\n"); | |
printf("\n %s -m base-model.gguf --lora lora-file.gguf -o merged-model-f16.gguf\n", argv[0]); | |
printf("\nNOTE: output model is F16\n"); | |
printf("\n"); | |
} | |
int main(int argc, char ** argv) { | |
common_params params; | |
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_EXPORT_LORA, print_usage)) { | |
return 1; | |
} | |
g_verbose = (params.verbosity > 1); | |
try { | |
lora_merge_ctx ctx(params.model, params.lora_adapters, params.lora_outfile, params.cpuparams.n_threads); | |
ctx.run_merge(); | |
} catch (const std::exception & err) { | |
fprintf(stderr, "%s\n", err.what()); | |
exit(EXIT_FAILURE); | |
} | |
printf("done, output file is %s\n", params.lora_outfile.c_str()); | |
return 0; | |
} | |